Sensory Neuron-Bacteria Interactions in Modulating Pain and the Host Microbiota
调节疼痛和宿主微生物群的感觉神经元-细菌相互作用
基本信息
- 批准号:9167647
- 负责人:
- 金额:$ 254.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAwardBacteriaBindingBiologicalBrainCapsaicinCellsChemicalsDevelopmentEconomic BurdenFoodGerm-FreeHealthHomeostasisHost DefenseHumanImmuneImmunologyInfectionInflammationLeadLigandsLymphatic DiseasesMediatingMediator of activation proteinMedical EconomicsMicrobeMolecularNervous system structureNeurobiologyNeuronsNociceptorsOrganismPainPeripheralPhysiologyPlayProductionProtein AnalysisPublic HealthQualifyingResearchRoleSensorySignal TransductionSkinStimulusTechniquesTestingTissuesTrainingTransgenic OrganismsUnited States National Institutes of Healthbasechronic paincommensal microbeseconomic costgut microbiotain vivoinsightmicrobialmicrobiotamulti-electrode arraysmustard oilneurotransmissionnovelnovel therapeuticsoptogeneticspathogenrelating to nervous systemrelease of sequestered calcium ion into cytoplasmresearch studysocioeconomicstherapy developmentwillingness
项目摘要
PROJECT ABSTRACT
Pain is a fundamental protective neuronal signal for organisms to avoid danger. Nociceptors are the specific
subset of peripheral sensory neurons that detect harmful/noxious stimuli and transmit pain signals to the brain.
Chronic pain is a major socio-economic burden, but the underlying molecular mechanisms are not well
understood. I previously found that bacterial pathogens produced pain by directly activating nociceptor
neurons during infection. Moreover, I found that nociceptors played a role in suppressing local immune cell
recruitment and lymphadenopathy. These findings raise the possibility that the nervous system can play a
direct participatory role in host defense. Nociceptor neurons densely innervate the skin and gut, which are
heavily colonized by commensal bacteria. However, the bidirectional crosstalk between the tissue-resident
microbes with the sensory nervous system is poorly understood. In this NIH Director's New Innovator Award, I
test the hypothesis that molecular interactions between the host microbiota and nociceptor neurons play a key
role in governing pain production and the composition of the microbiota. This research is motivated by basic
questions about the role of host-microbe interactions that will help us gain insights into mammalian physiology:
i) Do specific commensal gut or skin bacterial species (pathobionts or symbionts) set the threshold for
nociceptor neuron activity and development of chronic pain? ii) Can we identify specific bacterial molecular
mediators that modulate nociceptor neural activity and pain? iii) Do nociceptor-associated ligands in spicy
foods (e.g. capsaicin, mustard oil) have a significant impact on the composition and quality of the microbiota?
Iv) Do nociceptor neurons produce molecular mediators that directly impact the microbiota or tissue-resident
immune cells? To address these questions, I will combine neurobiological, immunological, and microbiological
approaches to analyze the reciprocal interactions between nociceptor neurons and the resident microbiota.
Germ-free and bacterial monocolonization experiments will determine if distinct symbiotic or pathobiotic
commensal bacterial strains influence the development of pain. Neuronal calcium flux, multi-electrode array
analysis, and protein chemical techniques will define the bacterial mediators that modulate nociceptor activity.
These analyses will lead to the identification of potential novel molecular mediators of pain. Conversely, I will
analyze if nociceptor activity in vivo plays a role in regulating the host microbiota. Using transgenic,
pharmacological, and optogenetic strategies to specifically deplete, activate or silence nociceptors, I will
ascertain whether sensory neurons modulate the composition of the skin and gut microbiota. Based on my
foundational training in Immunology and Neurobiology, along with the ability to carry out cross-disciplinary
scientific approaches, I am uniquely qualified to lead this effort. I have demonstrated a willingness to challenge
convential paradigms, focusing my research on questions that have potential impacts on human health. With
this proposed NIH Director's New Innovator Award, I will carry out studies to produce novel insights into host-
microbe interactions facilitating the development of treatments for chronic pain and microbial dysbiosis.
项目摘要
疼痛是生物体避免危险的基本保护性神经信号。伤害感受器是
检测有害/有害刺激并将疼痛信号传递到大脑的外周感觉神经元的子集。
慢性疼痛是一个主要的社会经济负担,但其潜在的分子机制并不清楚
明白我以前发现细菌病原体通过直接激活伤害感受器产生疼痛
感染期间的神经元此外,我发现伤害感受器在抑制局部免疫细胞中起作用,
募集和淋巴结病。这些发现提高了神经系统可以发挥作用的可能性。
直接参与宿主防御。伤害感受器神经元密集地支配皮肤和肠道,
大量寄生于肠道细菌。然而,在组织驻留之间的双向串扰是可能的。
微生物与感觉神经系统之间的关系还知之甚少。在这个NIH主任的新创新者奖,我
测试宿主微生物群和伤害感受器神经元之间的分子相互作用在
在控制疼痛产生和微生物群组成中的作用。这项研究的动机是基本的
关于宿主-微生物相互作用的作用的问题,这将有助于我们深入了解哺乳动物的生理学:
i)特定的肠道或皮肤细菌种类(致病菌或共生菌)是否设定了
伤害感受器神经元活动和慢性疼痛的发展?ii)我们能否识别特定的细菌分子
介体调节伤害感受器神经活动和疼痛?iii)在辛辣刺激中伤害感受器相关配体是否
食物(如辣椒素、芥末油)对微生物群的组成和质量有重大影响?
Iv)伤害感受器神经元是否产生直接影响微生物群或组织驻留的分子介质
免疫细胞?为了解决这些问题,我将结合联合收割机神经生物学,免疫学和微生物学
方法来分析伤害感受器神经元和常驻微生物群之间的相互作用。
无菌和细菌单菌落实验将确定不同的共生或致病性
肠道细菌菌株影响疼痛的发展。神经元钙流,多电极阵列
分析和蛋白质化学技术将确定调节伤害感受器活性的细菌介质。
这些分析将导致识别潜在的新型疼痛分子介质。相反,我会
分析体内伤害感受器活性是否在调节宿主微生物群中起作用。利用转基因技术,
药理学和光遗传学策略,专门消耗,激活或沉默伤害感受器,我将
确定感觉神经元是否调节皮肤和肠道微生物群的组成。根据我
免疫学和神经生物学的基础训练,沿着进行跨学科的能力
科学方法,我是唯一有资格领导这项工作的人。我表现出了挑战的意愿
传统的范式,集中我的研究对人类健康有潜在影响的问题。与
这个提议的NIH主任的新创新者奖,我将进行研究,以产生新的见解主机-
微生物相互作用促进慢性疼痛和微生物生态失调治疗方法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Ming-Cheng Chiu其他文献
Isaac Ming-Cheng Chiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Ming-Cheng Chiu', 18)}}的其他基金
Staphylococcus aureus induced itch and neuro-immune signaling in skin infections
金黄色葡萄球菌在皮肤感染中引起瘙痒和神经免疫信号传导
- 批准号:
10707178 - 财政年份:2022
- 资助金额:
$ 254.25万 - 项目类别:
Staphylococcus aureus induced itch and neuro-immune signaling in skin infections
金黄色葡萄球菌在皮肤感染中引起瘙痒和神经免疫信号传导
- 批准号:
10585152 - 财政年份:2022
- 资助金额:
$ 254.25万 - 项目类别:
Nociceptor neuron regulation of gastrointestinal barrier protection and host defense
伤害感受器神经元对胃肠道屏障保护和宿主防御的调节
- 批准号:
10530684 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Nociceptor neuron regulation of gastrointestinal barrier protection and host defense
伤害感受器神经元对胃肠道屏障保护和宿主防御的调节
- 批准号:
10322730 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Mechanistic studies on analgesic effects of terpene enriched extracts from hops
啤酒花萜类提取物镇痛作用的机理研究
- 批准号:
9895181 - 财政年份:2019
- 资助金额:
$ 254.25万 - 项目类别:
Mechanistic studies on analgesic effects of terpene enriched extracts from hops
啤酒花萜类提取物镇痛作用的机理研究
- 批准号:
10018714 - 财政年份:2019
- 资助金额:
$ 254.25万 - 项目类别:
Pain and Neuro-immune Signaling in S. pyogenes pathogenesis
化脓性链球菌发病机制中的疼痛和神经免疫信号传导
- 批准号:
9569582 - 财政年份:2017
- 资助金额:
$ 254.25万 - 项目类别:
Pain and Neuro-immune Signaling in S. pyogenes pathogenesis
化脓性链球菌发病机制中的疼痛和神经免疫信号传导
- 批准号:
10206013 - 财政年份:2017
- 资助金额:
$ 254.25万 - 项目类别:
Pain and Neuro-immune Signaling in S. pyogenes pathogenesis
化脓性链球菌发病机制中的疼痛和神经免疫信号传导
- 批准号:
9750511 - 财政年份:2017
- 资助金额:
$ 254.25万 - 项目类别:
Pain and Neuro-immune Signaling in S. pyogenes pathogenesis
化脓性链球菌发病机制中的疼痛和神经免疫信号传导
- 批准号:
9445623 - 财政年份:2017
- 资助金额:
$ 254.25万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 254.25万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 254.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 254.25万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 254.25万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 254.25万 - 项目类别:
Discovery Grants Program - Individual