Mechanisms of regulation of DNA repair helicases

DNA 修复解旋酶的调控机制

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT Helicases are a ubiquitous and highly diverse group of enzymes that separate the strands of nucleic acids and are found in bacteria, eukaryotes, archaea, and many viruses. They are essential components of the genome maintenance machinery. Their importance is highlighted in the many human disorders associated with defective helicase function. Many helicases have been shown to carry out multiple, distinct functions in the cell. Often, these processes place very different requirements on the helicase; for instance, one helicase may be tasked with unwinding for short distances, long distances, or not at all, depending on context. How these different functions are defined and regulated remains poorly understood. This project will focus on two proteins, UvrD and XPD, which serve as models for DNA repair helicases in prokaryotes and eukaryotes, respectively. Although they are primarily involved in DNA repair pathways, both helicases also participate in other cellular processes. UvrD and XPD are also prototypes for the two largest structural classes of helicases known, and insights gained on their mechanisms are likely to extend to a number of homologous systems. Prior studies have shown that helicase activity is strongly influenced by oligomeric and conformational state. A monomer can exhibit low or no unwinding activity, but multiple molecules unwind processively; helicases can unwind duplexes in one conformation but displace DNA-bound proteins in another. Helicase roles have thus been proposed to be defined in the cell by protein partners controlling their oligomeric and/or conformational state. These models remain speculative or have not been quantified adequately. In this project, we will investigate the mechanisms by which helicase activity is regulated; first by understanding the factors that limit activity in helicase monomers (Aim 1), next by measuring helicase oligomerization and quantifying how it enhances unwinding activity (Aim 2), and lastly by studying helicase unwinding together with selected protein partners to determine if they exploit the above strategies to regulate helicase activity (Aim 3). These aims will be achieved using a synthesis of single-molecule biophysical techniques—optical tweezers, fluorescence microscopy, and microfluidics—together with traditional biochemical methods. These novel approaches, which exploit the PIs' expertise, will be used to detect the unwinding of helicases at the single molecule level, in real time, and at high resolution, while simultaneously measuring their oligomeric and conformational state. Moreover, these techniques will enable the controlled assembly of multi-component complexes. Beyond providing insights on helicase mechanism and the DNA repair pathways in which they participate, our studies will advance biophysical methods for investigating the dynamics of biomolecular complexes.
项目概要/摘要 解旋酶是一组普遍存在且高度多样化的酶,可分离核酸链和 存在于细菌、真核生物、古细菌和许多病毒中。它们是基因组的重要组成部分 维修机械。它们的重要性在许多与缺陷相关的人类疾病中得到了凸显。 解旋酶功能。许多解旋酶已被证明在细胞中执行多种不同的功能。经常, 这些过程对解旋酶提出了截然不同的要求;例如,一个解旋酶的任务可能是 短距离放松、长距离放松或根本不放松,具体取决于具体情况。这些不同的功能如何 的定义和监管仍然知之甚少。 该项目将重点研究两种蛋白质,UvrD 和 XPD,它们作为 DNA 修复解旋酶的模型 分别是原核生物和真核生物。虽然它们主要参与 DNA 修复途径,但 解旋酶还参与其他细胞过程。 UvrD 和 XPD 也是两个最大的原型 已知解旋酶的结构类别,以及对其机制的了解可能会扩展到许多 的同源系统。先前的研究表明,解旋酶活性受到寡聚体和寡聚体的强烈影响。 构象状态。单体可以表现出低的解旋活性或没有解旋活性,但多个分子可以解旋 逐步地;解旋酶可以解开一种构象中的双链体,但置换另一种构象中的 DNA 结合蛋白。 因此,解旋酶的作用被认为是由控制其寡聚体的蛋白质伴侣在细胞中定义的。 和/或构象状态。 这些模型仍然是推测性的或尚未得到充分量化。在这个项目中,我们将调查 解旋酶活性的调节机制;首先了解限制活动的因素 解旋酶单体(目标 1),接下来通过测量解旋酶寡聚化并量化其增强方式 解旋活性(目标 2),最后通过与选定的蛋白质伙伴一起研究解旋酶解旋来 确定他们是否利用上述策略来调节解旋酶活性(目标 3)。 这些目标将通过综合单分子生物物理技术来实现——光镊、 荧光显微镜、微流体技术以及传统的生化方法。这些小说 利用 PI 专业知识的方法将用于检测单个解旋酶的解旋情况 实时、高分辨率地分子水平,同时测量它们的寡聚物和 构象状态。此外,这些技术将使多组件的受控组装成为可能 复合物。除了提供有关解旋酶机制及其 DNA 修复途径的见解之外 参与,我们的研究将推进研究生物分子动力学的生物物理方法 复合物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yann R. Chemla其他文献

Direct Measurement of Stepping Dynamics of <em>E. coli</em> UvrD Helicase
  • DOI:
    10.1016/j.bpj.2019.11.565
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Sean P. Carney;Kevin D. Whitley;Wen Ma;Haifeng Jia;Timothy M. Lohman;Zaida Luthey-Schulten;Yann R. Chemla
  • 通讯作者:
    Yann R. Chemla
Molecular Mechanism of Conformational Switching that Regulates Helicase Function
  • DOI:
    10.1016/j.bpj.2019.11.566
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Wen Ma;Sean Carney;Yann R. Chemla;Zaida Luthey-Schulten;J. Andrew McCammon
  • 通讯作者:
    J. Andrew McCammon
Chaperone-protein interactions in live zebrafish larvae
  • DOI:
    10.1016/j.bpj.2022.11.2563
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Aniket Ravan;Yann R. Chemla;Martin Gruebele
  • 通讯作者:
    Martin Gruebele
Effect of ATPase-Defective Mutant Doping on Functionality and Dynamics of Single Bacteriophage T4 DNA Packaging Motors
  • DOI:
    10.1016/j.bpj.2020.11.398
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Suoang Lu;Vishal I. Kottadiel;Li Dai;Digvijay Singh;Taekjip Ha;Venigalla B. Rao;Yann R. Chemla
  • 通讯作者:
    Yann R. Chemla
Probing the damage-sensing mechanism(s) of a DNA repair helicase
  • DOI:
    10.1016/j.bpj.2022.11.1003
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Alice Troitskaia;Paras Gaur;Masayoshi Honda;Maria Spies;Yann R. Chemla
  • 通讯作者:
    Yann R. Chemla

Yann R. Chemla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yann R. Chemla', 18)}}的其他基金

Mechanisms of DNA helicases and their regulation
DNA解旋酶的机制及其调控
  • 批准号:
    10330652
  • 财政年份:
    2022
  • 资助金额:
    $ 27.95万
  • 项目类别:
Mechanisms of DNA helicases and their regulation
DNA解旋酶的机制及其调控
  • 批准号:
    10591506
  • 财政年份:
    2022
  • 资助金额:
    $ 27.95万
  • 项目类别:
Mechanisms of regulation of DNA repair helicases
DNA 修复解旋酶的调控机制
  • 批准号:
    9751892
  • 财政年份:
    2016
  • 资助金额:
    $ 27.95万
  • 项目类别:
Mechanisms of regulation of DNA repair helicases
DNA 修复解旋酶的调控机制
  • 批准号:
    9324292
  • 财政年份:
    2016
  • 资助金额:
    $ 27.95万
  • 项目类别:
Combined ultrahigh-resolution optical tweezers and single-molecule fluorescence
超高分辨率光镊与单分子荧光相结合
  • 批准号:
    7943010
  • 财政年份:
    2009
  • 资助金额:
    $ 27.95万
  • 项目类别:
Mechanism of the bacteriophage phi29 DNA packaging motor
噬菌体phi29 DNA包装马达的机制
  • 批准号:
    6487851
  • 财政年份:
    2002
  • 资助金额:
    $ 27.95万
  • 项目类别:
Mechanism of the bacteriophage phi29 DNA packaging motor
噬菌体phi29 DNA包装马达的机制
  • 批准号:
    6756444
  • 财政年份:
    2002
  • 资助金额:
    $ 27.95万
  • 项目类别:
Mechanism of the bacteriophage phi29 DNA packaging motor
噬菌体phi29 DNA包装马达的机制
  • 批准号:
    6626248
  • 财政年份:
    2002
  • 资助金额:
    $ 27.95万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了