Bioinspired Composites for Dental Restorations

用于牙齿修复的仿生复合材料

基本信息

  • 批准号:
    8893555
  • 负责人:
  • 金额:
    $ 22.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Commercial resin composites work well in anterior restorations. However, in posterior restorations the clinical failure rate is 25% or more after 10 years with fracture being one of the two key contributors to failure. This program seeks to improve the clinical performance of resin based posterior restorations by developing a new class of dental composites that mimic the microstructure and mechanical behavior of enamel. We hypothesize that mimicking enamel near the dentin-enamel junction (DEJ) can increase the lifetime by enhancing resistance to crack formation and growth as well as subsequent material loss or bacterial penetration and recurrent decay. In particular, we hypothesize that imitating the enamel columns and the disoriented crossed rods between them can increase toughness while enhancing strength relative to the biting surface. Further, we believe that including stiffer fille materials like titania can enhance load transfer to the remaining tooth which would reduce fracture [and formation of marginal gaps] by decreasing the stress carried by the composite. [In addition, we will seek to minimize marginal gap formation by 'tuning' filler and matrix composition to better match the coefficient of thermal expansion of the tooth.] Our program is novel in its approach to mimicking enamel structure and in the type of composites we propose to develop. Unlike previous attempts to mimic enamel structure that focused on the controlled growth of hydroxyapatite crystals outside the mouth, we propose a system that develops its structure in-situ. Further, unlike commercial composites that have dispersed non-organized filler particles we propose an entirely new class of composites with hierarchically organized filler particles. Our approach will involve synthesizing and functionalizing silica and titania nanorods in low shrinkage phosphate or siloxane based acrylic liquid crystal monomers. These nanorods will be organized into bundles that imitate enamel prisms and then self-assembled into larger ordered structures together with additional discrete filler rods and particles in monomers that wil be subsequently solidified during polymerization. The organization of rods into bundles and then into larger structures will be controlled by thermodynamics and interfacial chemistry through the functionalization process and shape anisotropy. We will [iteratively design the composite microstructure and composition and] validate the potential of the composites as future restoration materials, by systematically assessing the polymerization shrinkage, swelling in a simulated oral environment and mechanical properties including flexural strength, elastic modulus, storage and loss modulus, and toughness. [In addition, we will evaluate the interactions of S mutans, the bacteria typyically responsible for secondary caries to determine if the composites have anti-bacterial properties of if the bacteria degrades the composite.] Because the approach is so new, we are requesting an exploratory grant to develop the enabling techniques required for this new class of highly filled (~60 vol%) composites. Our objective is to demonstrate the feasibility of our approach from a fundamental science, engineering and dental perspective.
 说明(申请人提供):商用树脂复合体在前牙修复中效果良好。然而,在后路修复体中,10年后临床失败率为25%或更高,骨折是导致失败的两个关键因素之一。该项目旨在通过开发一种新型的牙科复合材料来模拟牙釉质的微观结构和力学行为,以提高树脂基后部修复的临床性能。我们假设,在牙本质-牙釉质交界处(DEJ)附近模拟牙釉质可以通过增强对裂纹形成和生长以及随后的材料丢失或细菌渗透和反复腐烂的抵抗力来延长寿命。具体地说,我们假设模仿 釉质柱和它们之间无定向的交叉棒可以增加韧性,同时增强相对于咬合面的强度。此外,我们认为,加入更坚硬的牙槽材料,如二氧化钛,可以通过减少复合材料所承受的应力来增强向剩余牙齿的载荷转移,从而减少折裂[和边缘间隙的形成]。[此外,我们将通过调整填充剂和基质成分以更好地匹配牙齿的热膨胀系数来尽量减少边缘间隙的形成。]我们的程序在模仿牙釉质结构和我们计划开发的复合材料类型方面是新颖的。与以前模仿釉质结构的尝试不同,我们提出了一种原位开发其结构的系统,该系统专注于口腔外羟基磷灰石晶体的受控生长。此外,与分散无组织填充颗粒的商业复合材料不同,我们提出了一种全新的具有分级组织填充颗粒的复合材料类别。我们的方法将包括在低收缩磷酸盐或硅氧烷基丙烯酸液晶单体中合成二氧化硅和二氧化钛纳米棒并使其功能化。这些纳米棒将被组织成模仿珐琅棱柱的束状,然后自组装成更大的有序结构,以及额外的离散填充棒和单体中的颗粒,随后将在聚合过程中固化。通过官能化过程和形状各向异性,棒材的组织成束,然后形成更大的结构,将受到热力学和界面化学的控制。我们将[迭代设计复合材料的微观结构和成分],通过系统地评估聚合收缩、在模拟口腔环境中的膨胀以及包括弯曲强度、弹性模数、储存和损失模数以及韧性在内的力学性能,验证复合材料作为未来修复材料的潜力。[此外,我们将评估S变形杆菌的相互作用,以确定复合材料是否具有抗菌性能,以确定细菌是否会降解复合材料。变形杆菌通常是导致继发性龋齿的细菌。]由于这种方法是如此之新,我们正在申请探索性拨款,以开发这种新型高填充(~60VOL%)复合材料所需的使能技术。我们的目标是从基础科学、工程学和牙科的角度证明我们方法的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISABEL K LLOYD其他文献

ISABEL K LLOYD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISABEL K LLOYD', 18)}}的其他基金

Bioinspired Composites for Dental Restorations
用于牙齿修复的仿生复合材料
  • 批准号:
    9004620
  • 财政年份:
    2015
  • 资助金额:
    $ 22.3万
  • 项目类别:
Novel Joining and Interfacial Fracture Mechanics
新颖的连接和界面断裂力学
  • 批准号:
    6892181
  • 财政年份:
    2004
  • 资助金额:
    $ 22.3万
  • 项目类别:
Novel Joining and Interfacial Fracture Mechanics
新颖的连接和界面断裂力学
  • 批准号:
    6727721
  • 财政年份:
    2003
  • 资助金额:
    $ 22.3万
  • 项目类别:
SURFACE MODIFICATION FOR MACHINABILITY AND PERFORMANCE
表面改性以提高可加工性和性能
  • 批准号:
    6217541
  • 财政年份:
    1999
  • 资助金额:
    $ 22.3万
  • 项目类别:
SURFACE MODIFICATION FOR MACHINABILITY AND PERFORMANCE
表面改性以提高可加工性和性能
  • 批准号:
    6104885
  • 财政年份:
    1999
  • 资助金额:
    $ 22.3万
  • 项目类别:
SURFACE MODIFICATION FOR MACHINABILITY AND PERFORMANCE
表面改性以提高可加工性和性能
  • 批准号:
    6270344
  • 财政年份:
    1998
  • 资助金额:
    $ 22.3万
  • 项目类别:
SURFACE MODIFICATION FOR MACHINABILITY AND PERFORMANCE
表面改性以提高可加工性和性能
  • 批准号:
    6296321
  • 财政年份:
    1998
  • 资助金额:
    $ 22.3万
  • 项目类别:
SURFACE MODIFICATION FOR MACHINABILITY AND PERFORMANCE
表面改性以提高可加工性和性能
  • 批准号:
    6238556
  • 财政年份:
    1997
  • 资助金额:
    $ 22.3万
  • 项目类别:
Novel Joining and Interfacial Fracture Mechanics
新颖的连接和界面断裂力学
  • 批准号:
    6535329
  • 财政年份:
    1995
  • 资助金额:
    $ 22.3万
  • 项目类别:
SURFACE MODIFICATION FOR MACHINABILITY AND PERFORMANCE
表面改性以提高可加工性和性能
  • 批准号:
    3732675
  • 财政年份:
  • 资助金额:
    $ 22.3万
  • 项目类别:

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
  • 批准号:
    2330254
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
  • 批准号:
    23K17398
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
  • 批准号:
    2240506
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
  • 批准号:
    23K05776
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
  • 批准号:
    2322719
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
  • 批准号:
    EP/X025454/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Research Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
  • 批准号:
    2740295
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了