Metabolic Modeling for Cadaveric Organ Resuscitation
尸体器官复苏的代谢模型
基本信息
- 批准号:9115174
- 负责人:
- 金额:$ 40.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithm DesignAlgorithmsBiological PreservationCardiac DeathCessation of lifeClinicalComplexDataDevelopmentDevicesEngineeringEnsureGoalsHealthcareInjuryIschemiaLeadLeast-Squares AnalysisLiverLiver CirrhosisLiver FailureMetabolicMethodsModalityModelingOrganOrgan DonorOrgan PreservationOrgan TransplantationOrgan ViabilityOutcomePerfusionProcessRattusRecoveryResearchResuscitationScienceSurvival RateSystemTechnologyTestingTimeTranslationsTransplantationValidationWorkbasebody systemchronic liver diseasedesignindexingliver functionliver metabolismliver transplantationmetabolic profilenovelpreventsuccess
项目摘要
DESCRIPTION (provided by applicant): ABSTRACT Chronic liver disease and cirrhosis causes about 30,000 deaths annually in the US, 4,000 of which are directly due to lack of a donor liver available for transplant. These numbers could be reduced dramatically should the donor organ pool be expanded by rendering marginal cases, such as Donors obtained after Cardiac Death (DCD), transplantable. It is estimated that about 6,000 cadaveric livers/yr are only marginally damaged by ischemia post-cardiac death and could be resuscitated for transplantation. There is evidence from our lab and others that machine perfusion is a very promising approach for recovering cadaveric organs that would be otherwise rejected from the donor pool. However, clinical realization of such a machine perfusion device requires sophisticated algorithms that ensure tight control of the system, maximize the viability of the organ and accurately assess if the liver is ready for transplantation at the end of perfusion. There is a significant gap of algorithms designed for such an organ viability maximization task, which prevents clinical translation of these technologies and vertical advancement of the field. Our long-term goal is to develop novel engineering strategies to enable efficient transplantation of marginal donor organs and reduce deaths due to organ shortage. The objective of the proposed study is to develop a dynamic, online method to assess liver viability during perfusion and employ it to optimize liver metabolism to enhance recovery from ischemia. The central hypothesis to be tested here is that the liver viability during perfusion is correlated to liver metabolic function during machine perfusion. The work described here is expected to generate a dynamic, on-line liver viability score which can be used to assess the condition of the donor organs prior to transplantation surgery, ultimately reducing the guesswork involved in transplantation of marginal donor organs. The results of this work will also have a positive impact on engineering science by establishing the basis for integration of process design & control of these complex, dynamic organ preservation systems. The work is also expected to lead to improvements in healthcare by accelerating development of sophisticated organ preservation modalities and reducing deaths due to liver failure.
描述(由申请人提供): 摘要 在美国,慢性肝病和肝硬化每年导致约 30,000 人死亡,其中 4,000 人直接由于缺乏可供移植的供体肝脏而导致。如果通过使边缘病例(例如心源性死亡(DCD)后获得的供体)可移植来扩大供体器官库,这些数字可能会大幅减少。据估计,每年约有 6,000 具尸体肝脏因心源性死亡后的缺血而受到轻微损害,可以进行复苏以进行移植。我们的实验室和其他实验室的证据表明,机器灌注是一种非常有前途的恢复尸体器官的方法,否则这些器官可能会被供体池拒绝。然而,这种机器灌注设备的临床实现需要复杂的算法,以确保对系统的严格控制,最大限度地提高器官的活力,并在灌注结束时准确评估肝脏是否已准备好进行移植。为此类器官活力最大化任务设计的算法存在显着差距,这阻碍了这些技术的临床转化和该领域的垂直发展。 我们的长期目标是开发新颖的工程策略,以实现边缘供体器官的有效移植并减少因器官短缺而导致的死亡。拟议研究的目的是开发一种动态在线方法来评估灌注过程中的肝脏活力,并利用它来优化肝脏代谢以促进缺血恢复。这里要测试的中心假设是灌注期间的肝脏活力与机器灌注期间的肝脏代谢功能相关。 这里描述的工作预计将产生动态的在线肝脏活力评分,可用于在移植手术前评估供体器官的状况,最终减少边缘供体器官移植中涉及的猜测。这项工作的结果还将通过为这些复杂的动态器官保存系统的过程设计和控制的集成奠定基础,对工程科学产生积极影响。这项工作预计还将通过加速复杂的器官保存方式的发展并减少因肝衰竭而导致的死亡来改善医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Korkut Uygun其他文献
Korkut Uygun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Korkut Uygun', 18)}}的其他基金
Subzero Non-freezing preservation of whole mammalian organisms
整个哺乳动物有机体的零下非冷冻保存
- 批准号:
10451256 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Subzero Non-freezing preservation of whole mammalian organisms
整个哺乳动物有机体的零下非冷冻保存
- 批准号:
10705577 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Enhanced recovery of disqualified donor organs using image-guided machine perfusion
使用图像引导机器灌注加速不合格供体器官的恢复
- 批准号:
8831396 - 财政年份:2014
- 资助金额:
$ 40.57万 - 项目类别:
Metabolic Modeling for Cadaveric Organ Resuscitation
尸体器官复苏的代谢模型
- 批准号:
8518094 - 财政年份:2012
- 资助金额:
$ 40.57万 - 项目类别:
Metabolic Modeling for Cadaveric Organ Resuscitation
尸体器官复苏的代谢模型
- 批准号:
8343269 - 财政年份:2012
- 资助金额:
$ 40.57万 - 项目类别:
Development of a liver viability index for transplantation
移植肝活力指数的制定
- 批准号:
9977766 - 财政年份:2012
- 资助金额:
$ 40.57万 - 项目类别:
Development of a liver viability index for transplantation
移植肝活力指数的制定
- 批准号:
10436293 - 财政年份:2012
- 资助金额:
$ 40.57万 - 项目类别:
Development of a liver viability index for transplantation
移植肝活力指数的制定
- 批准号:
10205042 - 财政年份:2012
- 资助金额:
$ 40.57万 - 项目类别:
Development of a liver viability index for transplantation
移植肝活力指数的制定
- 批准号:
9770638 - 财政年份:2012
- 资助金额:
$ 40.57万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant














{{item.name}}会员




