Development of a New Generation Micro-CT imaging for Functional and Molecular Imaging of Cancer
开发用于癌症功能和分子成像的新一代显微 CT 成像
基本信息
- 批准号:9102033
- 负责人:
- 金额:$ 45.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyBlood VesselsCause of DeathClinicClinicalCollaborationsColorContrast MediaDCNUDataDevelopmentDiagnosticDiffusionDiscriminationDiseaseDoseDoxorubicin Hydrochloride LiposomeDrug Delivery SystemsFoundationsFunctional ImagingGenerationsGoalsGoldHealthHybridsImageInstitutionInvestigationIodineKnowledgeLip structureLiposomesMalignant NeoplasmsMeasuresMolecularNoisePatientsPermeabilityPharmaceutical PreparationsPhotonsProcessRadiation therapyResearchResolutionSolidSystemTestingToxic effectTranslationsUniversitiesVascular Endothelial Growth FactorsVascular PermeabilitiesWeightX-Ray Computed Tomographyanticancer researchbasecancer therapychemotherapycontrast imagingcost effectivedesigndetectorhuman diseaseimaging modalityimprovedimproved outcomein vivomolecular imagingnanoparticlenanoprobenew technologynext generationnovelphoton-counting detectorpre-clinicalpre-clinical researchquantitative imagingresponsesarcomasimulationspectrographtargeted imagingtargeted treatmenttheranosticstreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): Cancer is a leading cause of death in the world and remains a difficult disease to treat. A promising approach to image and treat cancer with the same agent is using nanoparticles (NPs). Computed tomography (CT) can offer an ideal imaging method to assist developments and test these NPs at preclinical level. However, current CT systems based on the use of energy integrating detectors, have limited contrast resolution. CT imaging can be improved by adding spectral capabilities. Our primary goal is to develop the next-generation spectral CT system and NPs for preclinical cancer research. To achieve this goal, we have established a collaboration between our academic research institution, Duke University ,and an industrial partner DxRay Inc.-a leader in developing photon-counting x-ray detectors (PCXD). We will pursue 4 specific aims. Specific aim 1 will focus on the development of PCXDs that will be integrated in a hybrid micro-CT system. The hybrid system uses a conventional high-resolution imaging chain based on an energy-integrating detector and a lower-resolution spectral imaging chain containing an x-ray photon-counting detector. The spectral imaging chain will provide multiple energy bins for the CT data, but with low spatial resolution. Through the conventional imaging chain, we will achieve high-resolution imaging with limited spectral information. DxRay will supply PCXDs with novel designs, progressively increasing the field of view. During specific aim 2, we will develop novel algorithms such as spectral diffusion and spectral deblurring allowing unprecedented spectral differentiation at high spatial resolution. Specific aim 3 will be dedicated to NP probe developments. Although our PCXD spectral micro-CT system should enable sensitive NP imaging based on a wide range of high Z-materials, we focus on NPs with high potential for clinical translation based on gold (Au) and iodine (I). We will synthesize and characterize liposomes containing iodine, gold nanoparticles (AuNPs), and vascular endothelial growth factor (VEGF)- conjugated AuNPs (VEGF-AuNPs). Finally, during specific aim 4, we will use the newly developed spectral micro-CT imaging and VEGF-AuNPs to study the augmentation effects and the increased vascular permeability caused by radiation therapy in sarcoma tumors. Our spectral micro-CT will pave the way for the translation of novel PCXDs and algorithms to clinical use. Furthermore, our results will establish how AuNPs- augmented radiation therapy can facilitate the delivery of chemotherapy into tumors to improve response. In the end, the new-generation spectral micro-CT can provide significant data required for the translational steps of NPs, generating the confidence necessary to move new cancer therapies to patients.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRISTIAN T BADEA其他文献
CRISTIAN T BADEA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRISTIAN T BADEA', 18)}}的其他基金
A multi-channel reconstruction toolkit for computed tomography
用于计算机断层扫描的多通道重建工具包
- 批准号:
10605585 - 财政年份:2021
- 资助金额:
$ 45.35万 - 项目类别:
Cardiac photon counting CT and its application in studying interactions between Alzheimer's and heart disease
心脏光子计数CT及其在研究阿尔茨海默病与心脏病相互作用中的应用
- 批准号:
10094804 - 财政年份:2021
- 资助金额:
$ 45.35万 - 项目类别:
The Duke Preclinical Research Resources for Quantitative Imaging Biomarkers
杜克大学定量成像生物标志物临床前研究资源
- 批准号:
9387149 - 财政年份:2017
- 资助金额:
$ 45.35万 - 项目类别:
The Duke Preclinical Research Resources for Quantitative Imaging Biomarkers
杜克大学定量成像生物标志物临床前研究资源
- 批准号:
10216193 - 财政年份:2017
- 资助金额:
$ 45.35万 - 项目类别:
The Duke Preclinical Research Resources for Quantitative Imaging Biomarkers
杜克大学定量成像生物标志物临床前研究资源
- 批准号:
9980797 - 财政年份:2017
- 资助金额:
$ 45.35万 - 项目类别:
Development of a New Generation Micro-CT imaging for Functional and Molecular Imaging of Cancer
开发用于癌症功能和分子成像的新一代显微 CT 成像
- 批准号:
9285745 - 财政年份:2015
- 资助金额:
$ 45.35万 - 项目类别:
Development of a New Generation Micro-CT imaging for Functional and Molecular Imaging of Cancer
开发用于癌症功能和分子成像的新一代显微 CT 成像
- 批准号:
8938900 - 财政年份:2015
- 资助金额:
$ 45.35万 - 项目类别:
Tumor perfusion in small animals with tomographic digital subtraction angiography
断层数字减影血管造影对小动物的肿瘤灌注
- 批准号:
7179179 - 财政年份:2007
- 资助金额:
$ 45.35万 - 项目类别:
Tumor perfusion in small animals with tomographic digital subtraction angiography
断层数字减影血管造影对小动物的肿瘤灌注
- 批准号:
7382461 - 财政年份:2007
- 资助金额:
$ 45.35万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Research Grant