The Role of Tropomodulin in Dendritic Spine Development and Synapse Formation
原调节蛋白在树突棘发育和突触形成中的作用
基本信息
- 批准号:9020110
- 负责人:
- 金额:$ 4.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Actin-Binding ProteinActinsAddressAdultAffectAlzheimer&aposs DiseaseAutistic DisorderAutomobile DrivingBehaviorBehavioralBrainCellsCommunicationComplexCytoskeletonDataDefectDendritic SpinesDevelopmentDiseaseElectrophysiology (science)Excitatory SynapseExhibitsFilamentFilopodiaFragile X SyndromeGeneticGoalsHippocampus (Brain)Immunofluorescence ImmunologicImmunofluorescence MicroscopyIntellectual functioning disabilityKnock-outMaintenanceMeasuresMediatingMental disordersMicrofilamentsMinus End of the Actin FilamentModificationMorphologyMusMutant Strains MiceMutateNervous system structureNeuraxisNeuronsPathway interactionsPhenotypePhysiologicalPlayProcessProtein FamilyProtein IsoformsProteinsRegulationRoleSchizophreniaStructureSurfaceSynapsesSynaptic TransmissionTimeTissuesVertebral columnVertebratesWorkbasedensitydepolymerizationimmunocytochemistryinsightknock-downlive cell imagingmonomermutantnervous system developmentnervous system disorderpostnatalpostsynapticpresynapticprotein expressionpublic health relevanceresearch studysmall hairpin RNAspatiotemporalsynaptic functionsynaptogenesistropomodulin
项目摘要
DESCRIPTION (provided by applicant): The proper establishment of synapses during development and their maintenance throughout adulthood is critical for complex brain functions. Synaptic dysregulation is associated with many neurological diseases such as schizophrenia, Fragile X and Alzheimer's. An understanding of how synapses are altered in disease states will first require an understanding of the molecules and pathways responsible for the establishment of synapses in the central nervous system during brain development. In vertebrates, the majority of excitatory synapses are formed on dendritic spines, tiny, actin-rich structures that protrude from the dendritic surface and act as the platform for presynaptic input. The dynamic remodeling of the actin cytoskeleton drives dendritic spine development and synapse formation. However, the cellular mechanisms responsible for actin organization and remodeling during postsynaptic development are not fully understood. Tropomodulins (Tmods) are a multi-domain family of proteins that cap the minus end of actin filaments; thereby blocking monomer exchange at the minus ends, inhibiting depolymerization, and stabilizing actin-based structures. Tmods are highly expressed in the central nervous system and genetic knock-out of Tmod2 in mice leads to behavioral and synaptic defects. However, the mode of action and underlying cellular mechanisms responsible for such phenotypes are unknown. Likewise, the isoform specific functions as well as the actin-regulatory domains of Tmod responsible for proper neuronal function have not been investigated. Thus, if and how Tmods play a role in actin remodeling during dendritic spine development and synapse formation remain unknown. Our preliminary data reveal that Tmods are expressed in both developing and mature dendritic spines, where in mature spines, Tmods concentrate in a region that contains relatively stable actin filaments. We find that Tmod protein levels increase in the hippocampus during postnatal development, a time when extensive synaptogenesis and refinement occurs. We hypothesize that minus end capping of actin filaments by Tmod is essential for the development and stability of dendritic spines during postsynaptic development, thereby allowing the structural modification of dendritic spines that occurs during synapse formation. In Specific Aim 1, we will knockdown Tmods in developing primary hippocampal neurons and use immunocytochemistry, live cell imaging, and electrophysiology to determine the function of Tmods during spinogenesis and synapse formation. In Specific Aim 2, we will mutate the Tmod minus end capping domain in order to investigate the role of Tmod minus end capping during postsynaptic development. By understanding the mechanisms by which Tmod minus end capping regulates the actin cytoskeleton within dendritic spines, this work will aid in our long term goal of understanding the
mechanisms by which excitatory synapses are established, maintained and dysregulated in disease states.
描述(由申请人提供):在发育过程中正确建立突触并在成年后保持突触对复杂的大脑功能至关重要。突触调节失调与许多神经系统疾病有关,如精神分裂症、脆性X和阿尔茨海默氏症。要理解突触在疾病状态下是如何改变的,首先需要了解在大脑发育过程中负责在中枢神经系统建立突触的分子和途径。在脊椎动物中,大多数兴奋性突触形成于树突棘上,树突是从树突表面伸出的富含肌动蛋白的微小结构,充当突触前输入的平台。肌动蛋白细胞骨架的动态重塑驱动树突棘的发育和突触的形成。然而,在突触后发育过程中,肌动蛋白的组织和重塑的细胞机制还不完全清楚。Tropomodulins(Tmods)是一个多结构域的蛋白质家族,覆盖肌动蛋白细丝的负端,从而阻止负端的单体交换,抑制解聚,并稳定基于肌动蛋白的结构。Tmod在中枢神经系统中高度表达,Tmod2的基因敲除会导致小鼠的行为和突触缺陷。然而,导致这些表型的作用模式和潜在的细胞机制尚不清楚。同样,Tmod的异构体特异性功能以及负责正常神经元功能的肌动蛋白调节域还没有被研究。因此,在树突棘发育和突触形成过程中,Tmods是否以及如何在肌动蛋白重塑中发挥作用仍不清楚。我们的初步数据显示,Tmods在发育中和成熟的树突棘中都有表达,而在成熟的脊椎中,Tmods集中在包含相对稳定的肌动蛋白细丝的区域。我们发现,在出生后的发育过程中,海马区的Tmod蛋白水平会增加,这是一个广泛的突触发生和细化的时期。我们推测,Tmod对肌动蛋白细丝的负端封顶对于突触后发育过程中树突棘的发育和稳定性是必不可少的,从而允许突触形成过程中树突棘的结构修饰。在特定的目标1中,我们将敲除发育中的原代海马神经元中的Tmods,并利用免疫细胞化学、活细胞成像和电生理学来确定Tmods在棘突发生和突触形成中的功能。在特定的目标2中,我们将突变Tmod负末端封顶结构域,以研究Tmod负末端封顶在突触后发育中的作用。通过了解Tmod减去末端封顶调节树突棘内肌动蛋白细胞骨架的机制,这项工作将有助于我们理解
兴奋性突触在疾病状态下建立、维持和失调的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omotola Folashade Omotade其他文献
Omotola Folashade Omotade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omotola Folashade Omotade', 18)}}的其他基金
The Role of Tropomodulin in Dendritic Spine Development and Synapse Formation
原调节蛋白在树突棘发育和突触形成中的作用
- 批准号:
8912202 - 财政年份:2015
- 资助金额:
$ 4.36万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 4.36万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 4.36万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 4.36万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 4.36万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 4.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 4.36万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 4.36万 - 项目类别: