Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
基本信息
- 批准号:9012524
- 负责人:
- 金额:$ 92.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectArchitectureAwardBedsBehavioralBiomedical EngineeringBrainCarbonCellsChemicalsChronicCicatrixCorpus striatum structureDataDevelopmentDevicesDiagnosticDopamineElectrical EngineeringElectrochemistryElectrodesElectronicsElectrophysiology (science)ElementsFluorescent DyesGenerationsGeometryGoalsHealthHumanImmune responseImmunohistochemistryImplantIn SituIndividualInvestigationJointsLearningMammalsMeasuresMental disordersMethodsModelingMonitorMotivationMotor CortexNeuromodulatorNeuronsNeurosciencesOpioid ReceptorPlayPreparationProcessPsychological reinforcementRattusReactionResearchResolutionRewardsRoleSamplingScanningSeriesSignal TransductionSiliconSiteSliceStructureTechniquesTestingTimeUpdateWorkbrain tissuecarbon fibercell assemblydensityimplantationinformation processinginnovationnanofabricationnervous system disorderneural circuitneural prosthesisneurochemistryneurophysiologynovelpre-clinicalpreventrelating to nervous systemresearch studyskillsstriosometheoriestime usetool
项目摘要
DESCRIPTION (provided by applicant): A major goal in neuroscience is to understand the computations performed by local brain circuits. A large obstacle to achieving this goal is that - at least in mammals - we currently cannot observe the spiking activity of most neurons within a circuit. A key reason is that standard electrodes are just too big, and provoke too much damage to brain tissue. If placed with high enough density to sample a majority of neurons, they would destroy the very circuit they are intended to monitor. Another important obstacle to understanding local brain computations is that circuit dynamics are rapidly and dramatically altered by chemical neuromodulators, which normally go unobserved. Real-time monitoring of critical modulators such as dopamine can be achieved using fast-scan cyclic voltammetry, but this method has not yet been effectively combined with large-scale circuit recordings. The proposed work would make important progress towards overcoming these obstacles, using ultra- dense arrays of 8µm carbon thread electrodes. These are stiff enough to insert deep into the brain, yet small enough to avoid a destructive immune response. By using an 80µm distance between electrodes, the great majority of neurons within a cortical layer would be within recording range. Furthermore, carbon thread electrodes are well-suited for chemical sensing using voltammetry. This proposal is to construct advanced new tools for neuroscientific investigation in a series of modular steps, culminating in 1024-channel, combined electrophysiological and electrochemical recording in freely-behaving rats. Aim 1 involves the development and testing of silicon frameworks that allow assembly of ultra-dense arrays, together with updated headstages that allow hundreds of channels to be monitored simultaneously. Aim 2 will exploit the ability of carbon thread electrodes to be sliced in situ during histological processing. This greatly facilitates the ability to localize individual recordig sites within microcircuit architecture, and to identify individual recorded neurons. Aim 3 involves further optimization of carbon thread electrodes for chemical sensing, and joint single-unit recording and fast-scan cyclic voltammetry across many electrodes simultaneously. Overall this project combines expertise in electrical engineering, neurophysiology, and neurochemistry to create innovative, powerful devices that will be widely disseminated and may have transformational impact for our understanding of how our brains work.
描述(由申请人提供):神经科学的一个主要目标是了解局部脑回路执行的计算。实现这一目标的一大障碍是--至少在哺乳动物中--我们目前无法观察到回路内大多数神经元的尖峰活动。一个关键原因是标准电极太大,对脑组织造成太大的损伤。如果放置的密度足够高,可以对大多数神经元进行采样,那么它们将破坏它们想要监测的电路。理解大脑局部计算的另一个重要障碍是,电路动态会被化学神经调节剂迅速而显著地改变,而这种改变通常是无法观察到的。使用快速扫描循环伏安法可以实现对多巴胺等关键调节剂的实时监测,但这种方法尚未与大规模电路记录有效结合。 拟议的工作将在克服这些障碍方面取得重要进展,使用8微米碳丝电极的超密集阵列。它们足够坚硬,可以深入大脑,但又足够小,可以避免破坏性的免疫反应。通过在电极之间使用80微米的距离,皮质层内的绝大多数神经元将在记录范围内。此外,碳丝电极非常适合使用伏安法进行化学传感。该建议是在一系列模块化步骤中构建用于神经科学研究的先进新工具,最终在自由行为大鼠中实现1024通道,结合电生理和电化学记录。 目标1涉及硅框架的开发和测试,该框架允许组装超密度阵列,以及更新的云台,允许同时监控数百个通道。目标2将利用碳丝电极在组织学处理过程中原位切片的能力。这极大地促进了在微电路架构内定位单个记录位点的能力,以及识别单个记录神经元的能力。目标3涉及进一步优化碳丝电极用于化学传感,以及同时跨多个电极的联合单单元记录和快速扫描循环伏安法。总的来说,该项目结合了电气工程,神经生理学和神经化学方面的专业知识,创造了创新的,功能强大的设备,这些设备将被广泛传播,并可能对我们了解大脑如何工作产生变革性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA D BERKE其他文献
JOSHUA D BERKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA D BERKE', 18)}}的其他基金
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
9896798 - 财政年份:2018
- 资助金额:
$ 92.22万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10660140 - 财政年份:2018
- 资助金额:
$ 92.22万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10132277 - 财政年份:2018
- 资助金额:
$ 92.22万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10456214 - 财政年份:2018
- 资助金额:
$ 92.22万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9328183 - 财政年份:2015
- 资助金额:
$ 92.22万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9147004 - 财政年份:2015
- 资助金额:
$ 92.22万 - 项目类别:
Basal Ganglia Pathways for Stopping and Switching
基底神经节通路的停止和切换
- 批准号:
8630262 - 财政年份:2013
- 资助金额:
$ 92.22万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 92.22万 - 项目类别:
Research Grant














{{item.name}}会员




