Exploring the role of microRNAs in injury-induced axonal growth in the CNS
探索 microRNA 在中枢神经系统损伤诱导的轴突生长中的作用
基本信息
- 批准号:8847819
- 负责人:
- 金额:$ 19.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAxonBiologyBrainCategoriesCell physiologyCellsCorticospinal TractsDataDependovirusDevelopmentDiseaseDorsalFutureGene ExpressionGenesGoalsGrowthHealthIn VitroIndividualInjuryKnowledgeLengthMediatingMessenger RNAMicroRNAsMicrofluidicsModelingMolecularMolecular ProfilingMolecular TargetMusNatural regenerationNeuraxisNeuritesNeurologicNeuronsPTEN genePathway interactionsPatientsPatternPhysiologyPlayPopulationPoriferaProtein BiosynthesisProteinsPublicationsQuality of lifeRNA SequencesRecovery of FunctionRegulationReporter GenesRoleScientistSiteSmall RNASpinalSpinal CordSpinal cord injuryStagingStrokeSystemTestingTherapeuticTimeTranslational RepressionUntranslated RNAWorkadeno-associated viral vectoraxon growthaxon regenerationcandidate selectioncell typecentral nervous system injuryimprovedin vivoinhibitor/antagonistinjuredinjury and repairinsightmiRNA expression profilingneuronal cell bodynoveloverexpressionpostnatalregenerativerepairedresearch studytherapeutic developmenttherapeutic targettooltranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): In spinal cord injuries, axons are cut from the neuronal cell bodies, and lack of axon regeneration is the principal cause of no or limited functional recovery in the central nervous system (CNS, including the brain and the spinal cord). While earlier studies emphasized the importance of neuron-extrinsic mechanisms, recent development in the field highlighted the central role of neuron-intrinsic control of axon growth and regeneration after CNS injury. Meanwhile, it is increasingly clear that targeting one molecule or pathway at a time is unlikely to bring about functionally meaningful axon growth and regeneration. miRNAs are small non-coding RNAs that post-transcriptionally regulate protein synthesis. One miRNA can regulate the expression of multiple proteins in multiple pathways, sometimes related in function. Here we propose to explore the role of miRNAs in spinal axon sprouting and regeneration after CNS injury. We hypothesize that in neurons some miRNAs are growth inhibitory while others are growth promoting. Reversal of the expression of growth inhibitory and promoting miRNAs after CNS injury may allow neurons to enter a more regenerative state, thus promoting axon growth and regeneration. In Aim 1, we will systematically profile miRNA expression in corticospinal neurons and axons before and after spinal cord injury and compare these data to miRNA expression in postnatal neurons that still possess significant axon growth ability. A comparison of miRNA expression profiles in neurons of different levels of regenerative abilities may provide important clues to the pattern and identiy of the miRNAs that may positively or negative regulate axon growth. The expression profiling will be considered together with target predictions to narrow down the candidate miRNAs to be functionally tested. In Aim 2, we will assess the effect of manipulating candidate miRNAs by overexpression or inhibition on axon growth in vitro using microfluidic chambers. We will use adeno-associated virus (AAV) to deliver miRNAs or inhibitory sponge constructs. These experiments will help us to further narrow down the number of candidates for in vivo studies. In Aim 3, we will assess the effect of manipulating candidate miRNAs on corticospinal axon sprouting and regeneration using pyramidotomy and dorsal hemisection spinal cord injury respectively. Together, these studies will start to assess the role and therapeutic potential of miRNAs for promoting axonal repair after CNS injury. The unique feature of miRNAs regulating multiple molecular targets and pathways simultaneously renders them attractive therapeutic targets and tools for diseases and injuries. This proposal represents an early step in the application of miRNA biology to axonal repair after CNS injury.
描述(由申请人提供):在脊髓损伤中,轴突从神经元细胞体上切下,轴突再生的缺乏是中枢神经系统(CNS,包括脑和脊髓)功能恢复不好或恢复有限的主要原因。虽然早期的研究强调了神经元外源性机制的重要性,但该领域的最新进展突出了中枢神经系统损伤后轴突生长和再生的神经元内源性控制的核心作用。同时,越来越清楚的是,一次靶向一个分子或通路不太可能带来功能上有意义的轴突生长和再生。miRNA是转录后调节蛋白质合成的小的非编码RNA。一个miRNA可以在多个途径中调节多种蛋白质的表达,有时在功能上相关。在这里,我们建议探索的作用,在脊髓轴突发芽和再生后,中枢神经系统损伤的miRNA。我们假设在神经元中,一些miRNAs是生长抑制的,而另一些是生长促进的。CNS损伤后抑制生长和促进生长的miRNA的表达可以允许神经元进入更再生的状态,从而促进轴突生长和再生。在目标1中,我们将系统地分析脊髓损伤前后皮质脊髓神经元和轴突中的miRNA表达,并将这些数据与仍具有显著轴突生长能力的出生后神经元中的miRNA表达进行比较。比较不同再生能力水平神经元中的miRNA表达谱可能为可能正向或负向调节轴突生长的miRNA的模式和身份提供重要线索。表达谱分析将与靶预测一起考虑,以缩小待进行功能测试的候选miRNA。在目标2中,我们将使用微流体室评估通过过表达或抑制来操纵候选miRNA对体外轴突生长的影响。我们将使用腺相关病毒(AAV)来递送miRNA或抑制性海绵构建体。这些实验将帮助我们进一步缩小体内研究的候选人数。在目标3中,我们将评估操纵候选miRNA对分别使用脊髓半切术和脊髓背侧半切损伤的皮质脊髓轴突发芽和再生的影响。总之,这些研究将开始评估miRNA在促进CNS损伤后轴突修复中的作用和治疗潜力。miRNAs同时调控多个分子靶点和通路的独特功能使其成为治疗疾病和损伤的有吸引力的靶点和工具。这一提议代表了miRNA生物学应用于CNS损伤后轴突修复的早期步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Binhai Zheng其他文献
Binhai Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Binhai Zheng', 18)}}的其他基金
The Role of a Pair of MAP3Ks in the Multicellular Response to Spinal Cord Injury
一对 MAP3K 在脊髓损伤多细胞反应中的作用
- 批准号:
10527004 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Elyra 7 Microscope with Lattice SIM2
带 Lattice SIM2 的 Elyra 7 显微镜
- 批准号:
10431347 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Harnessing Corticospinal Axon Sprouting for Functional Recovery in Chronic Injury
利用皮质脊髓轴突萌芽促进慢性损伤的功能恢复
- 批准号:
10269898 - 财政年份:2018
- 资助金额:
$ 19.38万 - 项目类别:
Harnessing Corticospinal Axon Sprouting for Functional Recovery in Chronic Injury
利用皮质脊髓轴突萌芽促进慢性损伤的功能恢复
- 批准号:
10929290 - 财政年份:2018
- 资助金额:
$ 19.38万 - 项目类别:
Harnessing Corticospinal Axon Sprouting for Functional Recovery in Chronic Injury
利用皮质脊髓轴突萌芽促进慢性损伤的功能恢复
- 批准号:
10493144 - 财政年份:2018
- 资助金额:
$ 19.38万 - 项目类别:
Harnessing Corticospinal Axon Sprouting for Functional Recovery in Chronic Injury
利用皮质脊髓轴突萌芽促进慢性损伤的功能恢复
- 批准号:
10038742 - 财政年份:2018
- 资助金额:
$ 19.38万 - 项目类别:
The role of a pair of MAP3Ks in the multicellular response to spinal cord injury
一对 MAP3K 在脊髓损伤多细胞反应中的作用
- 批准号:
10165174 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
The Role of a Pair of MAP3Ks in the Multicellular Response to Spinal Cord Injury
一对 MAP3K 在脊髓损伤多细胞反应中的作用
- 批准号:
10595452 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
The Role of a Pair of MAP3Ks in the Multicellular Response to Spinal Cord Injury
一对 MAP3K 在脊髓损伤多细胞反应中的作用
- 批准号:
10400012 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
The Role of a Pair of MAP3Ks in the Multicellular Response to Spinal Cord Injury
一对 MAP3K 在脊髓损伤多细胞反应中的作用
- 批准号:
10840233 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Standard Grant
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Studentship
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows