Numerical solution of differential equations with applications to computational finance and numerical weather forecasting

微分方程的数值解及其在计算金融和数值天气预报中的应用

基本信息

  • 批准号:
    8073-2006
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2006
  • 资助国家:
    加拿大
  • 起止时间:
    2006-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

I am engaged in several research projects to develop, analyze, test and evaluate numerical methods and to construct robust mathematical software.  I hope these projects will ultimately lead to improvements in mathematical software, enabling scientists, engineers and financial modelers either to solve previously intractable problems or to solve problems more efficiently and/or reliably than is currently possible. Previously, my research focused primarily on initial-value problems (IVPs) for ordinary differential equations (ODEs), but it has since broadened to include boundary value problems (BVPs) for ODEs as well as the application of ODE techniques to partial differential equations (PDEs) and to the solution of practical problems in science, engineering and finance.  I have a secondary interest in numerical linear algebra, particularly problems arising from differential equations.  Over the next few years, I will concentrate on the following two major projects: (1) the study of guaranteed error bounds for the numerical solution of IVPs for ODEs, with the long term goal of developing a robust, reliable, easy-to-use package incorporating these schemes; (2) the study of numerical methods for finance, with particular emphasis on effective computational techniques for computing the price of convertible bonds and the price of credit derivatives.
我参与了几个研究项目,以开发、分析、测试和评估数值方法,并构建强大的数学软件。我希望这些项目最终将导致数学软件的改进,使科学家、工程师和金融建模人员能够解决以前难以解决的问题,或者比目前可能的情况更有效和/或更可靠地解决问题。以前,我的研究主要集中在常微分方程组的初值问题,但后来扩大到包括常微分方程组的边值问题,以及将常微分方程组的边值问题应用于偏微分方程组和解决科学、工程和金融中的实际问题。我对数值线性代数,特别是来自微分方程的问题有次要的兴趣。在接下来的几年里,我将专注于以下两个主要项目:(1)常微分方程组数值解的保证误差界的研究,长期目标是发展一个健壮的,包含这些计划的可靠、易于使用的一揽子计划;(2)金融数值方法的研究,特别强调计算可转换债券价格和信用衍生品价格的有效计算技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jackson, Kenneth其他文献

Extracellular Vesicles (EVs) Are Copurified with Feline Calicivirus, yet EV-Enriched Fractions Remain Infectious.
  • DOI:
    10.1128/spectrum.01211-22
  • 发表时间:
    2022-08-31
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Mizenko, Rachel R.;Brostoff, Terza;Jackson, Kenneth;Pesavento, Patricia A.;Carney, Randy P.
  • 通讯作者:
    Carney, Randy P.
Insights into early postoperative acute kidney injury following lung transplantation
  • DOI:
    10.1111/ctr.14568
  • 发表时间:
    2022-01-10
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Botros, Mena;Jackson, Kenneth;Keller, Brian C.
  • 通讯作者:
    Keller, Brian C.
Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model.
  • DOI:
    10.1016/j.ajpath.2023.02.013
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Ball, Erin E.;Weiss, Christopher M.;Liu, Hongwei;Jackson, Kenneth;Keel, M. Kevin;Miller, Christopher J.;Van Rompay, Koen K. A.;Coffey, Lark L.;Pesavento, Patricia A.
  • 通讯作者:
    Pesavento, Patricia A.
A Novel Hepadnavirus is Associated with Chronic Hepatitis and Hepatocellular Carcinoma in Cats
  • DOI:
    10.3390/v11100969
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Pesavento, Patricia A.;Jackson, Kenneth;Beatty, Julia A.
  • 通讯作者:
    Beatty, Julia A.

Jackson, Kenneth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jackson, Kenneth', 18)}}的其他基金

Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
  • 批准号:
    RGPIN-2016-05637
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
  • 批准号:
    RGPIN-2016-05637
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
  • 批准号:
    RGPIN-2016-05637
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
  • 批准号:
    RGPIN-2016-05637
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
  • 批准号:
    RGPIN-2016-05637
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Methods and Software for Applications in Science, Engineering and Finance
科学、工程和金融应用的计算方法和软件
  • 批准号:
    RGPIN-2016-05637
  • 财政年份:
    2016
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical solution of differential equations with applications to computational finance and numerical weather forecasting
微分方程的数值解及其在计算金融和数值天气预报中的应用
  • 批准号:
    8073-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical solution of differential equations with applications to computational finance and numerical weather forecasting
微分方程的数值解及其在计算金融和数值天气预报中的应用
  • 批准号:
    8073-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical solution of differential equations with applications to computational finance and numerical weather forecasting
微分方程的数值解及其在计算金融和数值天气预报中的应用
  • 批准号:
    8073-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical solution of differential equations with applications to computational finance and numerical weather forecasting
微分方程的数值解及其在计算金融和数值天气预报中的应用
  • 批准号:
    8073-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Horndeski理论中Randall-Sundrum型厚膜解的研究
  • 批准号:
    11605127
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
N-体问题的中心构型及动力系统的分支理论
  • 批准号:
    10601071
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Moving Transformation Methods for the Numerical Solution of Partial Differential Equations
偏微分方程数值解的移动变换方法
  • 批准号:
    540111-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    University Undergraduate Student Research Awards
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
  • 批准号:
    RGPIN-2017-05811
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Partial Differential Equations and Their Numerical Solution
随机偏微分方程及其数值解
  • 批准号:
    1816378
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
Parallel Space-Time Approaches for the Numerical Solution of Partial Differential Equations
偏微分方程数值解的并行时空方法
  • 批准号:
    311796-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Partial Differential Equations: Algorithms, Analysis, and Applications
偏微分方程的数值解:算法、分析与应用
  • 批准号:
    1719694
  • 财政年份:
    2017
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了