Adaptive solution of differential equations
微分方程的自适应求解
基本信息
- 批准号:8781-2007
- 负责人:
- 金额:$ 5.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Development of increasingly powerful supercomputers is primarily driven by the need to numerically solve nonlinear partial differential equations (PDEs), the essence of most complex mathematical models in science and engineering. A wide array of sophisticated software tools are required, perhaps the most challenging, both from a theoretical and practical point of view, being robust adaptive algorithms. The role of such an algorithm is deceptively simple to state: recognize the regions where a physical solution is difficult to approximate, provide some measure of the extent of that difficulty, and adapt the numerical solution process accordingly. While scientists and engineers doing large scale computation have out of necessity long used adaptive algorithms, scientific computing as a discipline was initially slow to embrace its fundamental theoretical importance. Nevertheless, today journals are replete with papers analyzing adaptivity. Over the last fifteen years we have developed a class of adaptive techniques called moving mesh methods, which despite being slow to gain acceptance, are now viewed by increasing numbers of experts as an indispensible component of general numerical PDE algorithms for solving complex problems in areas as diverse as climate modelling and engineering design. Our research, focussed now mainly on higher dimensional problems, is proceeding apace on several fronts: (1) Most of the classical adaptive algorithms have traditionally been based upon variational techniques. Inspired by early work of engineers, we are investigating a fascinating new class of algorithms motivated more by geometric principles. (2) The acid test of any method being its ability to solve real world problems, we are refining a variety of techniques and developing mathematical software which incorporates the different moving mesh approaches. (3) We are applying these adaptive algorithms in new ways such as for moving front problems, to other classes of PDEs such as 4th order problems capable of modelling rich solution behaviour, and to new areas of application such as image registration. (4) Lastly, our ultimate goal is to provide a unifying framework and theory for mesh adaptivity.
日益强大的超级计算机的发展主要是由于需要数值求解非线性偏微分方程(PDE),这是科学和工程中大多数复杂数学模型的本质。需要一系列复杂的软件工具,从理论和实践的角度来看,这可能是最具挑战性的工具,那就是稳健的自适应算法。这种算法的作用看起来很简单:识别物理解难以逼近的区域,提供该困难程度的某种度量,并相应地调整数值求解过程。虽然从事大规模计算的科学家和工程师早已开始使用自适应算法,但作为一门学科,科学计算最初在接受其基本理论重要性方面进展缓慢。然而,今天的期刊上充斥着分析适应性的论文。在过去的十五年里,我们开发了一类称为移动网格方法的自适应技术,尽管这种方法获得接受的速度很慢,但现在越来越多的专家将其视为一般数值PDE算法的一个不可或缺的组成部分,用于解决气候建模和工程设计等各种领域的复杂问题。我们的研究目前主要集中在高维问题上,在以下几个方面取得了进展:(1)大多数经典的自适应算法传统上都是基于变分技术的。受工程师早期工作的启发,我们正在研究一类迷人的新算法,这些算法更多地是由几何原理驱动的。(2)对任何方法的严峻考验是它解决现实世界问题的能力,我们正在提炼各种技术,并开发结合不同移动网格方法的数学软件。(3)我们正在以新的方式应用这些自适应算法,例如用于移动前沿问题,应用于其他类型的偏微分方程,例如能够模拟丰富解行为的四阶问题,以及应用于新的应用领域,如图像配准。(4)最后,我们的最终目标是为网格自适应提供一个统一的框架和理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell, Robert其他文献
Nutrition research to affect food and a healthy life span
- DOI:
10.3945/jn.113.180638 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:4.2
- 作者:
Ohlhorst, Sarah D.;Russell, Robert;Konopka, Emily - 通讯作者:
Konopka, Emily
AWSM: Allocation of workflows utilizing social network metrics
- DOI:
10.1016/j.dss.2010.07.014 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:7.5
- 作者:
Bajaj, Akhilesh;Russell, Robert - 通讯作者:
Russell, Robert
NanoSIMS imaging of lipid absorption by intestinal enterocytes.
- DOI:
10.1016/j.jlr.2022.100290 - 发表时间:
2022-11 - 期刊:
- 影响因子:6.5
- 作者:
Chen, Kai;Song, Wenxin;Russell, Robert;Ferrari, Alessandra;Darwish, Tamim;Tontonoz, Peter;Young, Stephen G.;Jiang, Haibo - 通讯作者:
Jiang, Haibo
Patient-Specific Instrumentation Does Not Improve Alignment in Total Knee Arthroplasty
- DOI:
10.1055/s-0034-1368143 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:1.7
- 作者:
Russell, Robert;Brown, Timothy;Jones, Richard - 通讯作者:
Jones, Richard
Nutrition research to affect food and a healthy life span
- DOI:
10.3945/ajcn.113.067744 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:7.1
- 作者:
Ohlhorst, Sarah D.;Russell, Robert;Konopka, Emily - 通讯作者:
Konopka, Emily
Russell, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell, Robert', 18)}}的其他基金
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2013
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2012
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2011
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2010
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2009
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2008
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical solutions of partial differentieal equations
偏微分方程的数值解
- 批准号:
8781-2002 - 财政年份:2006
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical solutions of partial differentieal equations
偏微分方程的数值解
- 批准号:
8781-2002 - 财政年份:2005
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical solutions of partial differentieal equations
偏微分方程的数值解
- 批准号:
8781-2002 - 财政年份:2004
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical solutions of partial differentieal equations
偏微分方程的数值解
- 批准号:
8781-2002 - 财政年份:2003
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Horndeski理论中Randall-Sundrum型厚膜解的研究
- 批准号:11605127
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
N-体问题的中心构型及动力系统的分支理论
- 批准号:10601071
- 批准年份:2006
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2022
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2021
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2020
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2019
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2018
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2013
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2012
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Implementation and analysis of adaptive algorithms for the numerical solution of partial differential equations
偏微分方程数值求解自适应算法的实现与分析
- 批准号:
311796-2008 - 财政年份:2012
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Implementation and analysis of adaptive algorithms for the numerical solution of partial differential equations
偏微分方程数值求解自适应算法的实现与分析
- 批准号:
311796-2008 - 财政年份:2011
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual
Adaptive solution of differential equations
微分方程的自适应求解
- 批准号:
8781-2007 - 财政年份:2011
- 资助金额:
$ 5.68万 - 项目类别:
Discovery Grants Program - Individual