Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
基本信息
- 批准号:105463-2007
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 1980's, A. Connes introduced noncommutative spaces, and began to develop noncommutative geometry, a rapidly growing new area of mathematics which contributes to many disciplines in mathematics and physics. A large source of examples of noncommutative spaces is given by the quotient of equivalence relations. I.F. Putnam, C.F. Skau and I have extensively studied the noncommutative spaces associated with minimal homeomorphisms on a Cantor set. In collaboration with H. Matui, we plan to pursue the study of orbit equivalence for larger classes of minimal actions.Connes and Woods defined a new property of ergodic theory called approximate transitivity (AT) to characterize a class of von Neumann algebras. They also noted that the Poisson boundary of some random walks is AT. Recently D.E. Handelman and I developed dimension spaces, a measure theoretic version of dimension groups. We will continue the study of the Poisson boundary of random walks using dimension spaces and will apply it to von Neumann algebras.One of most important recent developments in the classification of C*-algebras is Elliott's classification program of amenable C*-algebras. Its starting point was an example by Blackadar of a non approximately finite (AF) sub C*-algebra of an AF algebra. I want to study the real C*-algebra equivalent to both Blackadar's example and Elliott's program.Many properties of von Neumann algebras and C*-algebras translate in properties of their unitary groups, in some cases considered as discrete or as topological groups. I plan to continue the study of such correspondences for classes of both C*-algebras and with Ping Ng of von Neumann algebras.
20世纪80年代,A.康纳斯介绍了非交换空间,并开始发展非交换几何,一个迅速发展的新领域的数学,有助于许多学科的数学和物理。等价关系的商给出了非交换空间的大量例子。Putnam,C.F. Skau和我广泛地研究了与康托集上的极小同胚相关的非交换空间。与H合作。Connes和Woods定义了遍历理论中的一个新性质--近似传递性(AT)来刻画一类von Neumann代数。他们还指出,一些随机游动的泊松边界是AT。最近D。汉德曼和我开发了维数空间,一个测度论版本的维数组。我们将继续研究泊松边界的随机游动使用维空间,并将其应用到冯诺依曼代数。最近最重要的发展之一,在分类的C*-代数是埃利奥特的分类程序的顺从C*-代数。它的出发点是一个例子Blackadar的非近似有限(AF)子C*-代数的AF代数。我想研究与Blackadar的例子和Elliott的程序等价的真实的C*-代数。冯诺依曼代数和C*-代数的许多性质转化为它们的酉群的性质,在某些情况下被认为是离散群或拓扑群。我计划继续研究这类对应的两个C*-代数和吴平冯诺依曼代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giordano, Thierry其他文献
Validating the City Region Food System Approach: Enacting Inclusive, Transformational City Region Food Systems
- DOI:
10.3390/su10051680 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:3.9
- 作者:
Blay-Palmer, Alison;Santini, Guido;Giordano, Thierry - 通讯作者:
Giordano, Thierry
Giordano, Thierry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giordano, Thierry', 18)}}的其他基金
Operator algebras and dynamical systems
算子代数和动力系统
- 批准号:
RGPIN-2018-06855 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
- 批准号:
RGPIN-2018-06855 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
- 批准号:
RGPIN-2018-06855 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
- 批准号:
RGPIN-2018-06855 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
- 批准号:
RGPIN-2018-06855 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras and Dynamics
算子代数和动力学
- 批准号:
105463-2012 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras and Dynamics
算子代数和动力学
- 批准号:
105463-2012 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras and Dynamics
算子代数和动力学
- 批准号:
105463-2012 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras and Dynamics
算子代数和动力学
- 批准号:
105463-2012 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras and Dynamics
算子代数和动力学
- 批准号:
105463-2012 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
- 批准号:11574129
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2011
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2010
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2009
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenability, approximate transitivity, antiautomorphisms, unitary groups and operator algebras
拓扑轨道等价、顺应性、近似传递性、反自同构、酉群和算子代数
- 批准号:
105463-2007 - 财政年份:2008
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenable actions, extreme amenability, approximate transitivity and operator algebras
拓扑轨道等价、顺应作用、极端顺应性、近似传递性和算子代数
- 批准号:
105463-2002 - 财政年份:2006
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Classification of operator algebras arising from minimal dynamical systems and topological orbit equivalence of minimal dynamical systems
最小动力系统产生的算子代数分类及最小动力系统的拓扑轨道等价
- 批准号:
18740085 - 财政年份:2006
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Topological orbit equivalence, amenable actions, extreme amenability, approximate transitivity and operator algebras
拓扑轨道等价、顺应作用、极端顺应性、近似传递性和算子代数
- 批准号:
105463-2002 - 财政年份:2005
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenable actions, extreme amenability, approximate transitivity and operator algebras
拓扑轨道等价、顺应作用、极端顺应性、近似传递性和算子代数
- 批准号:
105463-2002 - 财政年份:2004
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenable actions, extreme amenability, approximate transitivity and operator algebras
拓扑轨道等价、顺应作用、极端顺应性、近似传递性和算子代数
- 批准号:
105463-2002 - 财政年份:2003
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Topological orbit equivalence, amenable actions, extreme amenability, approximate transitivity and operator algebras
拓扑轨道等价、顺应作用、极端顺应性、近似传递性和算子代数
- 批准号:
105463-2002 - 财政年份:2002
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual