Problems concerning convergence and separation properties in topological spaces
拓扑空间中的收敛性和分离性问题
基本信息
- 批准号:238944-2006
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Set theory and topology are two research areas that are sometimes described as a part of the "foundations" of mathematics. A typical foundational question one might ask is "what assumptions (axioms) are needed in order to develop modern mathematics?" The axioms of Zermelo-Frankel set theory with the Axiom of Choice are now almost universally accepted as the axiom system within which modern mathematics is developed. A consequence of Godel's Incompleteness Theorem is that ZFC, and for that matter any other acceptable axiom system for mathematics, must be incomplete: there are mathematical statements that are independent of ZFC, i.e., they can neither be proven nor refuted from the axioms of ZFC. There are now many important mathematical conjectures from across many mathematical disciplines that have been shown to be independent of ZFC. And the area of topology has more than its fair share. Knowing that a particular mathematical conjecture is independent is not only of obvious intrinsic interest (knowing it is indendent means that we can stop looking for a proof of the conjecture or of the negation of the conjecture) but establishes a clear connection between one mathematical discipline to the area of set theory. Establishing connections between apparantly disparate mathematical fields has always produced interesting and important mathematics. Research related to independence results in topology has played an important role in the development of research in both areas of set theory and topology. This research proposal is focussed on some particular problems from general topology where deep set theoretic connections have either already been established, or we believe exist. It is expected that work on this proposal should lead to the development of new and important ideas in both set theory and in general topology.
集合论和拓扑学是两个研究领域,有时被描述为数学“基础”的一部分。人们可能会问的一个典型的基础问题是“为了发展现代数学,需要什么假设(公理)?”Zermelo-Frankel集合论的公理和选择公理现在几乎被普遍接受为现代数学发展的公理系统。哥德尔不完备定理的一个结论是,ZFC,以及任何其他可接受的数学公理系统,都必须是不完备的:存在独立于ZFC的数学命题,即它们既不能被证明,也不能被ZFC的公理反驳。现在有许多重要的数学猜想来自许多数学学科,它们被证明是独立于ZFC的。拓扑学的面积比它的公平份额大得多。知道一个特定的数学猜想是独立的不仅具有明显的内在利益(知道它是独立的意味着我们可以停止寻找猜想的证明或猜想的否定),而且在一个数学学科与集合论领域之间建立了明确的联系。在明显不同的数学领域之间建立联系总是能产生有趣而重要的数学。拓扑学中独立性结果的研究对集合论和拓扑学的发展都起着重要的作用。本研究计划的重点是一般拓扑学中的一些特殊问题,其中深度集论连接要么已经建立,要么我们认为存在。人们期望在这一建议上的工作将导致在集合论和一般拓扑中新的和重要的思想的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Szeptycki, Paul其他文献
Szeptycki, Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Szeptycki, Paul', 18)}}的其他基金
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
- 批准号:
RGPIN-2019-06356 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Problems related to D-spaces.
与 D 空间相关的问题。
- 批准号:
238944-2012 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Problems related to D-spaces.
与 D 空间相关的问题。
- 批准号:
238944-2012 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Problems related to D-spaces.
与 D 空间相关的问题。
- 批准号:
238944-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Problems related to D-spaces.
与 D 空间相关的问题。
- 批准号:
238944-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Problems related to D-spaces.
与 D 空间相关的问题。
- 批准号:
238944-2012 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Problems concerning convergence and separation properties in topological spaces
拓扑空间中的收敛性和分离性问题
- 批准号:
238944-2006 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Integrating 'Records' and 'Memories' Concerning the Nagasaki Atomic Bombing
整合有关长崎原子弹爆炸的“记录”和“记忆”
- 批准号:
23H00893 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Re-examining the understanding of agency and consent in law concerning sexual offences involving autistic people
重新审视有关自闭症患者性犯罪的法律中对代理和同意的理解
- 批准号:
2887429 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Studentship
How might an unmet patient need in metal health concerning memory be satisfied using transcribed session summaries
如何使用转录的会议摘要来满足患者在金属健康方面与记忆相关的未满足需求
- 批准号:
10045783 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Collaborative R&D
Empirical and implementation research concerning various population interventions to prevent and reduce social isolation among older adults
关于预防和减少老年人社会孤立的各种人口干预措施的实证和实施研究
- 批准号:
23H00060 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quality Oriented Design Method for CPS Concerning Effects of Modules with Uncertain Behaviour
涉及不确定行为模块影响的CPS质量导向设计方法
- 批准号:
23K11058 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the pathology concerning inflammasome associated pancytopenia in severe sepsis, and its control by microRNA.
阐明严重脓毒症中炎症小体相关的全血细胞减少症的病理学及其通过 microRNA 的控制。
- 批准号:
23K08434 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A General Study concerning the Formation and Development of Anthropology in Ancient Greece
古希腊人类学的形成与发展概况
- 批准号:
23K00043 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
What percentage of words (tokens) should learners know to comprehend listening materials? An updated examination for teachers and researchers concerning input mode, meaning senses of words, and genre
学习者应该知道多少百分比的单词(标记)才能理解听力材料?
- 批准号:
23K00712 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of sociotechnical-imaginary concerning new food-tech
新食品技术的社会技术想象研究
- 批准号:
23K17489 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigating neural substrates concerning the lifecycle of brand love
研究与品牌喜爱生命周期相关的神经基质
- 批准号:
23K01663 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




