Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
基本信息
- 批准号:8235-2006
- 负责人:
- 金额:$ 3.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since about the 1980's, there has been a long period of remarkable and intense activity in (modern) geometry, spurred on by the deep connexions with mathematical physics. As research progressed in these areas, it became increasingly apparent that deeply within certain questions lay new questions of great complexity about aggregates of new objects constrained by complex relations. These new questions are essentially combinatorial in the sense that they can be expressed in purely combinatorial terms, without reference to the original setting in geometry and mathematical physics. The purpose of this Research Proposal is to make advances into the solution of combinatorial questions that arise in this way. To do so, I propose to examine three questions of great complexity in algebraic geometry, that are notable in their own right, in the conviction that hidden within them is rich structure that, once understood, will lead to powerful mathematical methodology of wider applicability. I propose to use combinatorial constructions to transform the new interrelated objects, and then to use properties of carefully constructed algebras and further mathematical transformations to elicit tangible and concrete information about the original geometric questions themselves. This will require the development of the algebraic and analytic methodology. Because of the level of generality that these abstractions permit, the methodology developed here will be applicable to other questions in this area. At the foundation of this approach is the research and experience that I have already accumulated in algebraic combinatorics. (For mathematicians: The questions I shall examine are: i) the structure of the double Hurwitz numbers for ramified covers of the sphere, ii) Faber's intersection number conjecture for the moduli space of smooth curves, and iii) certain invariants of 3-manifolds.)
自20世纪80年代以来,(现代)几何学在与数学物理学的深刻联系的推动下,经历了一段漫长而激烈的活动。随着研究在这些领域的进展,越来越明显的是,在某些问题的深处,存在着关于受复杂关系约束的新对象的集合的非常复杂的新问题。这些新问题本质上是组合的,因为它们可以用纯粹的组合术语来表达,而不需要参考几何和数学物理中的原始设置。本研究提案的目的是推进以这种方式出现的组合问题的解决方案。为此,我建议研究代数几何中的三个非常复杂的问题,这三个问题本身就值得注意,因为我相信隐藏在它们之中的是丰富的结构,一旦理解了这些结构,就会产生具有更广泛适用性的强大数学方法。然后使用精心构造的代数的性质和进一步的数学变换来引出关于原始几何问题本身的有形和具体的信息。这就需要发展代数和分析方法。由于这些抽象所允许的一般性水平,这里发展的方法将适用于这一领域的其他问题。这种方法的基础是我在代数组合学方面已经积累的研究和经验。(For数学家:我将研究的问题是:i)结构的双重Hurwitz数的分歧覆盖的领域,ii)费伯的交叉数猜想的模空间的光滑曲线,和iii)某些不变量的3流形。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jackson, David其他文献
Advancing Cell Biology and Functional Genomics in Maize Using Fluorescent Protein-Tagged Lines
- DOI:
10.1104/pp.108.130146 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:7.4
- 作者:
Mohanty, Amitabh;Luo, Anding;Jackson, David - 通讯作者:
Jackson, David
Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus
- DOI:
10.1038/ng.2534 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:30.8
- 作者:
Bommert, Peter;Nagasawa, Namiko Satoh;Jackson, David - 通讯作者:
Jackson, David
Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes
- DOI:
10.1038/s41477-021-00858-5 - 发表时间:
2021-02-22 - 期刊:
- 影响因子:18
- 作者:
Liu, Lei;Gallagher, Joseph;Jackson, David - 通讯作者:
Jackson, David
A Role for Fibroblast Growth Factor Signaling in the Lobuloalveolar Development of the Mammary Gland
- DOI:
10.1023/a:1026351414004 - 发表时间:
1997-10-01 - 期刊:
- 影响因子:2.5
- 作者:
Jackson, David;Bresnick, Janine;Dickson, Clive - 通讯作者:
Dickson, Clive
The N Terminus of the Influenza B Virus Nucleoprotein Is Essential for Virus Viability, Nuclear Localization, and Optimal Transcription and Replication of the Viral Genome
- DOI:
10.1128/jvi.01542-14 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:5.4
- 作者:
Sherry, Lee;Smith, Matt;Jackson, David - 通讯作者:
Jackson, David
Jackson, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jackson, David', 18)}}的其他基金
SVI Community Science Celebration
SVI 社区科学庆典
- 批准号:
561360-2021 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
PromoScience Supplement for Science Odyssey
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2015
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2014
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2013
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2012
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2011
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2010
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2009
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2008
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2006
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Algebraic combinatorics and its ties with other areas
代数组合学及其与其他领域的联系
- 批准号:
20K03551 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2018
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics of Symmetric Functions and its Applications to Representation Theory and Enumerative Combinatorics
对称函数的代数组合及其在表示论和枚举组合学中的应用
- 批准号:
18K03208 - 财政年份:2018
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2017
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2016
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2015
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2015
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2014
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and its Applications
代数组合学及其应用
- 批准号:
1362336 - 财政年份:2014
- 资助金额:
$ 3.21万 - 项目类别:
Continuing Grant