Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
基本信息
- 批准号:8235-2011
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2011
- 资助国家:加拿大
- 起止时间:2011-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since about the 1980's there has been a long period of remarkable and intense activity in modern geometry, spurred on by the deep connexions with mathematical physics. For the same reason, there were advances in Modern Knot Theory, prompted partly by the occurrence of a particular fundamental equation, the Yang-Baxter Equation, in both mathematical physics and knot theory. As research progressed in these areas, it became increasingly apparent that deeply within questions about individual knot invariants lay new questions of great complexity about Vassiliev invariants, and aggregates of new objects, or diagrams, constrained by complex relations. These new questions are essentially combinatorial in nature, and may be expressed abstractly, without reference to their original context. An instance of such a diagram is the Feynman diagram from quantum field theory.
大约自20世纪80年代以来,在与数学物理的深刻联系的推动下,现代几何在很长一段时间里出现了显著而激烈的活动。出于同样的原因,现代结理论也取得了进步,部分原因是在数学物理和结理论中出现了一个特殊的基本方程,即杨-巴克斯特方程。随着这些领域的研究进展,越来越明显的是,在关于单个结不变量的问题的深处,存在着关于瓦西里耶夫不变量的新问题,以及受复杂关系约束的新对象或图的集合。这些新问题本质上是组合的,可以抽象地表达,而不参考它们的原始背景。这种图的一个例子是量子场论中的费曼图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jackson, David其他文献
Advancing Cell Biology and Functional Genomics in Maize Using Fluorescent Protein-Tagged Lines
- DOI:
10.1104/pp.108.130146 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:7.4
- 作者:
Mohanty, Amitabh;Luo, Anding;Jackson, David - 通讯作者:
Jackson, David
Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus
- DOI:
10.1038/ng.2534 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:30.8
- 作者:
Bommert, Peter;Nagasawa, Namiko Satoh;Jackson, David - 通讯作者:
Jackson, David
Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes
- DOI:
10.1038/s41477-021-00858-5 - 发表时间:
2021-02-22 - 期刊:
- 影响因子:18
- 作者:
Liu, Lei;Gallagher, Joseph;Jackson, David - 通讯作者:
Jackson, David
A Role for Fibroblast Growth Factor Signaling in the Lobuloalveolar Development of the Mammary Gland
- DOI:
10.1023/a:1026351414004 - 发表时间:
1997-10-01 - 期刊:
- 影响因子:2.5
- 作者:
Jackson, David;Bresnick, Janine;Dickson, Clive - 通讯作者:
Dickson, Clive
The N Terminus of the Influenza B Virus Nucleoprotein Is Essential for Virus Viability, Nuclear Localization, and Optimal Transcription and Replication of the Viral Genome
- DOI:
10.1128/jvi.01542-14 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:5.4
- 作者:
Sherry, Lee;Smith, Matt;Jackson, David - 通讯作者:
Jackson, David
Jackson, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jackson, David', 18)}}的其他基金
SVI Community Science Celebration
SVI 社区科学庆典
- 批准号:
561360-2021 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
PromoScience Supplement for Science Odyssey
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2009
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2008
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2007
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its applications to algebraic geometry
代数组合学及其在代数几何中的应用
- 批准号:
8235-2006 - 财政年份:2006
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Algebraic combinatorics and its ties with other areas
代数组合学及其与其他领域的联系
- 批准号:
20K03551 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics of Symmetric Functions and its Applications to Representation Theory and Enumerative Combinatorics
对称函数的代数组合及其在表示论和枚举组合学中的应用
- 批准号:
18K03208 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic geometry of toric varieties and its applications to combinatorics.
环面簇的代数几何及其在组合数学中的应用。
- 批准号:
RGPIN-2015-05787 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and its application to algebraic geometry and low dimensional topology
代数组合及其在代数几何和低维拓扑中的应用
- 批准号:
8235-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and its Applications
代数组合学及其应用
- 批准号:
1362336 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant