Robust Derivative-Free Algorithms for Complex Optimisation Problems
用于复杂优化问题的鲁棒无导数算法
基本信息
- 批准号:DE240100006
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2024
- 资助国家:澳大利亚
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical optimisation gives a systematic way for optimal decision-making. This project aims to develop new mathematical tools for complex optimisation problems where limited problem information is available. It will generate new foundational theories for alternative optimisation tools, introducing substantial new capability and rigour to the discipline. The project will create significant new mathematical optimisation techniques and create world-leading and publicly available software. These new techniques and software may ultimately be able to solve some of the most complex optimisation problems in research and industry, such as improving long-term climate predictions and designing 3D-printed medical implants.
数学优化为最优决策提供了一种系统的方法。该项目旨在为复杂的优化问题开发新的数学工具,其中有限的问题信息可用。它将为替代优化工具产生新的基础理论,为该学科引入大量新的能力和严谨性。该项目将创建重要的新数学优化技术,并创建世界领先的公开软件。这些新技术和软件最终可能能够解决研究和工业中一些最复杂的优化问题,例如改善长期气候预测和设计3D打印医疗植入物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Lindon Roberts其他文献
Dr Lindon Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2021
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2020
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
- 批准号:
RGPIN-2015-05311 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
- 批准号:
RGPIN-2015-05311 - 财政年份:2018
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2018
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Use of surrogates in derivative-free optimization
在无导数优化中使用代理
- 批准号:
418250-2012 - 财政年份:2017
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
- 批准号:
RGPIN-2015-05311 - 财政年份:2017
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
- 批准号:
RGPIN-2015-05311 - 财政年份:2016
- 资助金额:
$ 30.78万 - 项目类别:
Discovery Grants Program - Individual