Derivative-free and blackbox optimization for engineering problems

针对工程问题的无导数和黑盒优化

基本信息

  • 批准号:
    RGPIN-2015-05311
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This research project is the continuation of my prior work funded by NSERC on the development of the Mesh Adaptive Direct Search algorithm (MADS) for derivative-free and blackbox optimization problems.  In many engineering optimization problems, the objective and constraint functions are nonsmooth and evaluated through a computer simulation. The outputs of these codes are often of limited precision, contaminated with numerical noise, expensive to evaluate, and sometimes the code fails to return a value. ***There has been an important amount of work in developing models to improve the efficiency of direct search optimization methods.  Quadratic models, Gaussian processes, kriging interpolation as well as radial basis functions are such examples.  There has also been work on expanding the capabilities to integer, categorical and periodic variables, on efficient treatment of constraints, on bi- and multi objective problems.  In the present proposal we plan to pursue the development of MADS methods in many ways.***The current MADS algorithm generates trial points on a discretization of the space of variables called the mesh.  Several engineers that have applied MADS to practical problems complained that a consequence of the way that the mesh size parameter is updated leads to modifications in the values of the variables below a reasonable granularity.  We plan to alter the way that the mesh size parameter is updated, which is at the heart of the MADS algorithm, and the cornerstone of the nonsmooth convergence analysis.  ****Some constraints return a binary value indicating if it is satisfied or not, e.g., a flag indicating if the simulation failed or not.  Such a binary constraint is difficult to model using the above-mentioned modelling techniques.  We plan to import classification methods and data mining tools from the machine learning community to model them.  We proposed the BiMADS algorithm for biobjective blackbox constrained optimization.  For such problems, BiMADS returns a finite list of trade-off solutions, with respect to two conflicting objectives.  We plan to once again use classification tools to analyze the nature of the list of trade-off solutions, and to create representative solutions.***Surrogates are used by MADS as an inexpensive substitute of the true simulation.  MADS uses them by sampling the surrogate several times before deciding where to launch the true simulation.  Our numerical experiments systematically show that surrogates considerably help in finding better solutions.  We plan to devise a generic framework to handle surrogates with parametrizable precision, and to build additional models to dynamically estimate the difference between the true and surrogate functions.   ***All the projects outlined in this proposal will be rigorously analyzed using nonsmooth calculus.**
该研究项目是NSERC资助的关于网格自适应直接搜索算法(MADS)的先前工作的延续。在许多工程优化问题中,目标和约束功能是非平滑的,并通过计算机模拟进行了评估。这些代码的输出通常受到限制的精度,被数值噪声污染,评估昂贵,有时代码无法返回值。 ***在开发模型以提高直接搜索优化方法的效率时,已经有很多重要的工作。这些例子就是二次模型,高斯过程,克里格插值以及径向基础函数。还在研究将功能扩展到整数,分类和周期性变量,有效地处理约束和多目标问题。在本提案中,我们计划以许多方式追求MADS方法的开发。几位对实际问题应用疯狂的工程师抱怨说,更新网格大小参数的方式导致变量值以下的变量值的修改。我们计划改变网格大小参数更新的方式,这是MADS算法的核心,也是非平滑收敛分析的基石。 ****一些约束返回二进制值,指示是否满足,例如,标志指示模拟是否失败。这种二进制约束很难使用上述建模技术进行建模。我们计划将分类方法和数据挖掘工具从机器学习社区导入,以对其进行建模。我们提出了用于生物原始黑框的BIMADS算法约束优化。对于此类问题,Bimads就两个相互矛盾的目标返回了权衡解决方案的有限列表。我们计划再次使用分类工具来分析权衡解决方案列表的性质,并创建代表性的解决方案。 MADS通过在决定启动真正的模拟的位置之前多次对代理人采样来使用它们。我们的数值实验系统地表明,代替代有助于找到更好的解决方案。我们计划设计一个通用框架来处理具有可参数精度的替代物,并构建其他模型以动态估计真实和替代功能之间的差异。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Audet, Charles其他文献

Mesh adaptive direct search algorithms for mixed variable optimization
  • DOI:
    10.1007/s11590-008-0089-2
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Abramson, Mark A.;Audet, Charles;Walston, Jennifer G.
  • 通讯作者:
    Walston, Jennifer G.
Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search
  • DOI:
    10.1007/s10898-007-9234-1
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Audet, Charles;Bechard, Vincent;Le Digabel, Sebastien
  • 通讯作者:
    Le Digabel, Sebastien
ORTHOMADS: A DETERMINISTIC MADS INSTANCE WITH ORTHOGONAL DIRECTIONS
  • DOI:
    10.1137/080716980
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Abramson, Mark A.;Audet, Charles;Le Digabel, Sebastien
  • 通讯作者:
    Le Digabel, Sebastien
A mesh adaptive direct search algorithm for multiobjective optimization
  • DOI:
    10.1016/j.ejor.2009.11.010
  • 发表时间:
    2010-08-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Audet, Charles;Savard, Gilles;Zghal, Walid
  • 通讯作者:
    Zghal, Walid
Finding optimal algorithmic parameters using derivative-free optimization
  • DOI:
    10.1137/040620886
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Audet, Charles;Orban, Dominique
  • 通讯作者:
    Orban, Dominique

Audet, Charles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Audet, Charles', 18)}}的其他基金

Grey box optimization
灰盒优化
  • 批准号:
    RGPIN-2020-04448
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Grey box optimization
灰盒优化
  • 批准号:
    RGPIN-2020-04448
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Grey box optimization
灰盒优化
  • 批准号:
    RGPIN-2020-04448
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Développement d'algorithmes d'optimisation de boîtes-noires pour des applications en énergie
能源应用的黑森林优化算法开发
  • 批准号:
    490744-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Research and Development Grants
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Développement d'algorithmes d'optimisation de boîtes-noires pour des applications en énergie
能源应用的黑森林优化算法开发
  • 批准号:
    490744-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Research and Development Grants
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Derivative-free and blackbox optimization for engineering problems
针对工程问题的无导数和黑盒优化
  • 批准号:
    RGPIN-2015-05311
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development, analysis and application of optimization methods for engineering problems
工程问题优化方法的开发、分析和应用
  • 批准号:
    239436-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向光刻机超精密定位的空间六自由度位移复合测量方法研究
  • 批准号:
    52375525
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
烷基氮自由基介导的烯烃氨化双官能团化反应的研究
  • 批准号:
    22371036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非手性配体构筑的钛中心手性催化剂的设计合成及其催化的不对称自由基反应研究
  • 批准号:
    22371168
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
蓝宝石自由曲面光学元件的超精密集成制造工艺链及创成机理研究
  • 批准号:
    52305460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
亚声速自由剪切湍流中条纹结构的非线性动力学和声辐射
  • 批准号:
    12302290
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
  • 批准号:
    10093094
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative R&D
A sustainable, healthier and significantly lower carbon emitting UK produced cocoa-free chocolate
可持续、更健康且碳排放显着降低的英国生产的无可可巧克力
  • 批准号:
    10083944
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Investment Accelerator
Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
  • 批准号:
    DE240100179
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Early Career Researcher Award
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CAREER: Melting-free Photonic Memory with Layered Chalcogenide Materials
职业:采用层状硫族化物材料的免熔化光子存储器
  • 批准号:
    2338546
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了