Inference for ranking data
排名数据的推断
基本信息
- 批准号:9076-2006
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider a situation where patients are being monitored with respect to their responses to a particular treatment. Patients are supposed to report at a clinic at regular times in order that measurements be taken reflecting their health status. It is conjectured that there should be an improvement over a period of time and that this improvement is not constant but that it is only noticeable at certain times. Unfortunately not every patient reports to the clinic at the required times, so there are missing observations. The object of the analysis is to show, in spite of the missing data, that there has been an improvement over the monitored times, and to identify those times at which improvement is marked and significant. Consider also the situation where patients are required to take medications over a period of time for a particular ailment. Not all patients are careful in following the required schedules for the taking of medications particularly if there are combinations of different medications that must be taken at different times, nor do all patients comply with the prescribed activities that may be part of the regime. In order to determine the success of different methods (such as written material, one-on-one instruction, etc.) for educating patients as to their condition, their medication requirements and related activities, patients are divided into several groups in which different methods were used to impart information and conduct training. After a certain period of time has elapsed, patients in these groups are given questionnaires relating to their level of understanding. It is desired to compare the level of comprehension between the groups, in the light of the fact that not all patients answer all questions. These scenarios are examples of direct applications of the anticipated results of my proposed research in Inference for Ranking Data.
考虑这样一种情况:正在监测患者对特定治疗的反应。病人应该定期到诊所报到,以便进行反映其健康状况的测量。应当强调的是,在一段时间内应该有改善,这种改善不是恒定的,而是只有在某些时候才明显。不幸的是,并不是每个病人都在规定的时间到诊所报到,所以有观察结果缺失。分析的目的是表明,尽管数据缺失,但在监测时间内已有所改善,并确定改善明显和显著的时间。还要考虑患者需要在一段时间内服用药物治疗特定疾病的情况。并非所有患者都认真遵循所需的服药时间表,特别是如果必须在不同时间服用不同药物的组合,也不是所有患者都遵守可能是该方案一部分的规定活动。为了确定不同方法(如书面材料、一对一指导等)的成功与否,为了教育病人了解他们的病情,他们的药物需求和相关活动,病人被分成几组,其中使用不同的方法来传授信息和进行培训。经过一段时间后,这些组中的患者会收到与他们的理解水平有关的问卷。考虑到并非所有患者都回答了所有问题,希望比较各组之间的理解水平。这些场景是我在排名数据推理中提出的研究的预期结果的直接应用的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cabilio, Paul其他文献
Cabilio, Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cabilio, Paul', 18)}}的其他基金
Inference for ranking data
排名数据的推断
- 批准号:
9076-2006 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference for ranking data
排名数据的推断
- 批准号:
9076-2006 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference for ranking data
排名数据的推断
- 批准号:
9076-2006 - 财政年份:2007
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference for ranking data
排名数据的推断
- 批准号:
9076-2006 - 财政年份:2006
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric testing for two-way designs
双向设计的非参数检验
- 批准号:
9076-2001 - 财政年份:2005
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric testing for two-way designs
双向设计的非参数检验
- 批准号:
9076-2001 - 财政年份:2003
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric testing for two-way designs
双向设计的非参数检验
- 批准号:
9076-2001 - 财政年份:2002
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric testing for two-way designs
双向设计的非参数检验
- 批准号:
9076-2001 - 财政年份:2001
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Analysis of general block designs for rank data
排名数据的一般块设计分析
- 批准号:
9076-1997 - 财政年份:2000
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Analysis of general block designs for rank data
排名数据的一般块设计分析
- 批准号:
9076-1997 - 财政年份:1999
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
III: Medium: Dataset Search and Ranking for Data Augmentation and Explanation
III:中:用于数据增强和解释的数据集搜索和排序
- 批准号:
2106888 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Data collection & analysis relating to ranking of International Association of Maritime Univ.
数据采集
- 批准号:
539905-2019 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
University Undergraduate Student Research Awards
Application of Quantum Theory to Partial Retrieval of Online Course Materials
量子理论在在线课程资料部分检索中的应用
- 批准号:
16K00498 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical analyses for ranking data
排名数据统计分析
- 批准号:
9068-2009 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
III: Small: Entity Selection and Ranking for Data-Mining Applications
III:小:数据挖掘应用程序的实体选择和排序
- 批准号:
1218437 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant
Statistical analyses for ranking data
排名数据统计分析
- 批准号:
9068-2009 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Novel Efficient Clustering Techniques for Data Mining, Ranking, Pattern Recognition and Segmentation of Large Scale Data Sets
用于大规模数据集的数据挖掘、排序、模式识别和分割的新型高效聚类技术
- 批准号:
1130662 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Statistical analyses for ranking data
排名数据统计分析
- 批准号:
9068-2009 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Novel Efficient Clustering Techniques for Data Mining, Ranking, Pattern Recognition and Segmentation of Large Scale Data Sets
用于大规模数据集的数据挖掘、排序、模式识别和分割的新型高效聚类技术
- 批准号:
1200592 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
III: Small: Efficient Ranking and Aggregate Query Processing for Probabilistic Data
III:小:概率数据的高效排序和聚合查询处理
- 批准号:
1212310 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant