Algebraic independence and diophantine approximation
代数独立性和丢番图近似
基本信息
- 批准号:138225-2009
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
- Main topic: A fascinating conjecture from transcendental number theory asserts that Q-linearly independent logarithms of algebraic numbers are algebraically independent over Q. Its solution would for example imply a conjecture of Leopoldt on the non-vanishing of the p-adic regulator of a number field for any prime number p. My main goal is to prove that any sufficiently large set of Q-linearly independent logarithms of algebraic numbers contains two algebraically independent elements. Some years ago, I showed that, in principle, well-known constructions are sufficient to capture all the needed information, in the form of a sequence of polynomials taking small values on large sets of points from a finitely generated subgroup of the algebraic group Ga x Gm. This requires new results that would encompass both Philippon's criterion for algebraic independence and the actual zero estimates. Recently, I was able to prove non-trivial estimates of this form for the one dimensional groups Ga and Gm, and I have partial results for the two-dimensional group Ga x Gm which I intend to develop.
- 主要议题:超越数论中一个有趣的猜想断言,代数数的Q-线性无关代数是在Q上代数无关的。 它的解决方案将例如意味着一个猜想Leopoldt对非零的p-进调节器的一个数字领域的任何素数p.我的主要目标是要证明,任何足够大的一套Q-线性无关的代数数包含两个代数独立的元素。几年前,我证明了,原则上,众所周知的结构足以捕捉所有需要的信息,以多项式序列的形式,在代数群Ga x Gm的一个非线性生成子群的大点集上取小值。 这需要新的结果,将包括两个菲利蓬的标准代数独立性和实际零估计。最近,我能够证明非平凡的估计,这种形式的一维组Ga和Gm,我有部分结果的二维组Ga x Gm,我打算发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roy, Damien其他文献
Roy, Damien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roy, Damien', 18)}}的其他基金
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
- 批准号:
RGPIN-2019-05618 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
- 批准号:
138225-2009 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
- 批准号:
RGPIN-2014-05086 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
- 批准号:
138225-2009 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
- 批准号:
138225-2009 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
- 批准号:
138225-2009 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
- 批准号:
138225-2009 - 财政年份:2009
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diophantine approximation and algebraic independence
丢番图近似和代数独立性
- 批准号:
138225-1996 - 财政年份:1999
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual