Algebraic independence and Diophantine approximation

代数独立性和丢番图近似

基本信息

  • 批准号:
    RGPIN-2014-05086
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

My research programme addresses two fundamental problems in number theory.The first one deals with algebraic independence of values of the usual exponential function. The Graal here is a very general conjecture of Schanuel which contains all known results and all generally accepted conjectures on these values. For example it implies the transcendence of the number pi, proved by Lindemann in 1882, which in turn shows the impossibility of the ancient Greek problem of squaring the circle. In 2001, I proved that a construction of auxiliary function due to M. Waldschmidt should suffice to attack this conjecture. This seems to be the first realistic programme towards solving the conjecture. It reduces the problem to what I call a “small value estimate”, the problem of analyzing when a polynomial can take small values at many points of a highly structured set. It calls for a result that would encompass the wonderful zero estimates of Masser, Philippon and Wüstholz and the famous criterion for algebraic independence of Philippon. It raises fascinating new questions. One particular case that I would like to solve is showing that there are at least two prime numbers whose logarithms are algebraically independent, meaning that their logarithms are not linked by a polynomial relation with integer coefficients. Progress on this topic would probably generalize to more numbers and later extend to commutative algebraic groups towards a more general conjecture of Grothendieck. A solution to Schanuel's conjecture would have impact on all of number theory as it would for example solve a famous conjecture of Iwasawa theory called Leopoldt's conjecture.The second problem has older roots. The question of approximating a real number, like pi, by rational numbers has been central since the birth of mathematics. Nowadays, we are interested for example in simultaneous rational approximation to families of real numbers. There are general results which tell us how good an approximation we can get and, for almost all families of real numbers, one cannot do much better. However, there are exceptions and it is important to understand them. Recently, W.M. Schmidt and L. Summerer developed a general theory that should encompass all results on this topic. My first goal is to show that their description is essentially the best possible. A surprise is that unexpectedly good approximations may also exist for points in geometric progressions or more generally for points belonging to an algebraic curve (meaning that they essentially depend of just one parameter). I showed this in the case of points of a non-degenerate conic, but the curves of higher degree are a complete mystery for the moment. The study of rational approximation to points in geometric progression is particularly important because it is related, through a method of Davenport and Schmidt, to approximations to real numbers by algebraic integers of a given degree. A better understanding of this situation could eventually shed light on an important question of Wirsing. This problem is also linked with the first as it concerns understanding when certain quantities can be simultaneously small.
我的研究计划解决了数论中的两个基本问题。第一个问题涉及通常指数函数值的代数独立性。这里的 Graal 是 Schanuel 的一个非常普遍的猜想,其中包含所有已知的结果以及对这些值的所有普遍接受的猜想。例如,它暗示了林德曼在1882年证明的圆周率的超越性,这反过来又表明了古希腊化圆为方问题的不可能性。 2001 年,我证明了 M. Waldschmidt 提出的辅助函数构造应该足以攻击这个猜想。这似乎是解决该猜想的第一个现实计划。它将问题简化为我所说的“小值估计”,即分析多项式何时可以在高度结构化的集合的许多点上取小值的问题。它需要一个包含 Masser、Philippon 和 Wüstholz 出色的零估计以及 Philippon 代数独立性的著名标准的结果。它提出了令人着迷的新问题。我想解决的一个特殊情况是,至少有两个素数的对数是代数独立的,这意味着它们的对数不通过与整数系数的多项式关系联系起来。这个主题的进展可能会推广到更多的数字,然后扩展到交换代数群,从而实现更普遍的格洛腾迪克猜想。夏纽尔猜想的解决方案将对整个数论产生影响,例如,它将解决岩泽理论的一个著名猜想,即利奥波德猜想。第二个问题有更古老的根源。自数学诞生以来,用有理数逼近实数(例如 pi)的问题一直是核心问题。如今,我们对实数族的联立有理逼近感兴趣。有一些一般结果告诉我们可以得到多好的近似值,并且对于几乎所有实数族来说,我们不能做得更好。然而,也有例外,理解它们很重要。最近,W.M. Schmidt 和 L. Summerer 提出了一种通用理论,应涵盖该主题的所有结果。我的第一个目标是表明他们的描述本质上是最好的。令人惊讶的是,对于几何级数中的点或更一般地对于属于代数曲线的点(这意味着它们本质上仅取决于一个参数)也可能存在出乎意料的良好近似。我在非退化圆锥曲线的点的情况下展示了这一点,但更高阶的曲线目前完全是个谜。对几何级数点的有理逼近的研究特别重要,因为它通过达文波特和施密特的方法与给定次数的代数整数对实数的逼近相关。对这种情况的更好理解最终可能会揭示维尔辛的一个重要问题。这个问题也与第一个问题相关,因为它涉及理解何时某些数量可以同时很小。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roy, Damien其他文献

Roy, Damien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roy, Damien', 18)}}的其他基金

Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and Diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    RGPIN-2014-05086
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic independence and diophantine approximation
代数独立性和丢番图近似
  • 批准号:
    138225-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Diophantine approximation and algebraic independence
丢番图近似和代数独立性
  • 批准号:
    138225-1996
  • 财政年份:
    1999
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了