Wavelets in robust designs and longitudinal time series analysis
稳健设计中的小波和纵向时间序列分析
基本信息
- 批准号:217396-2008
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Experimenters are often searching for the values of input variables that will provide the optimal yield in a process. In most cases, the number of input variables are many and the system can be represented by nonlinear models. In some situations it may be possible to guess the structure of the nonlinear function needed to represent the system to some degree of accuracy. However, in many cases the function may be unknown. It turns out that if little or nothing is known about the structure of the nonlinearity in a system, it has been found that a class of functions known as wavelets can be used to model the nonlinearity very closely for the purpose of analysis, prediction and inference. We intend to exploit this flexible property of wavelets to construct designs for nonlinear systems. Our goal is to focus on systems in which there are more than one input variable. Furthermore, in longitudinal time series, the variance of the series may vary from subject to subject or the variance of the series from a group of subjects may differ from the variance of the other groups. In addition, each of the series may also have a trend component which may not be the same across the entire data. Before analyzing the longitudinal data, it is then important to know if (i) the variance of each of the series is the same, and (ii) it is safe to assume that the trend component is the same for the series from each subject, in the presence of the correlation structure within each series. Our goal is to develop wavelet based procedures for assessing the nature of the nonstationarity in the mean of each series and determining if it is the same across several time series in a longitudinal set up. Our approach will take into account the correlation structure of each series. This will then have an impact on how tests for equality of variances across these time series will be performed. To our knowledge, current methods have assumed that the trend in each of the series is the same. Our objective is to extend these results to the case where the trend may defer from series to series. The proposed research is useful in design construction and in medical research, plant physiology and animal growth curves - areas in which the problem of comparison of curves frequently arise.
实验人员经常在一个过程中寻找能提供最佳产量的输入变量的值。在大多数情况下,输入变量的数量很多,系统可以用非线性模型来表示。在某些情况下,可以猜测非线性函数的结构,以便在一定程度上精确地表示系统。然而,在许多情况下,函数可能是未知的。事实证明,如果对系统中非线性的结构知之甚少或一无所知,则可以使用一类称为小波的函数来非常密切地模拟非线性,以便进行分析,预测和推理。我们打算利用小波的这种挠性来构造非线性系统的设计。我们的目标是关注有多个输入变量的系统。此外,在纵向时间序列中,该序列的方差可能因受试者而异,或者一组受试者的序列方差可能不同于其他组的方差。此外,每个序列也可能有一个趋势成分,在整个数据中可能不相同。在分析纵向数据之前,重要的是要知道(i)每个序列的方差是否相同,以及(ii)在每个序列中存在相关结构的情况下,可以安全地假设来自每个主题的序列的趋势分量相同。我们的目标是开发基于小波的程序,用于评估每个序列的平均值的非平稳性的性质,并确定它是否在纵向设置的几个时间序列中相同。我们的方法将考虑到每个序列的相关结构。这将对如何执行跨这些时间序列的方差相等检验产生影响。据我们所知,目前的方法假设每个序列的趋势是相同的。我们的目标是将这些结果扩展到趋势可能从一个序列延迟到另一个序列的情况。所提出的研究在设计、建造和医学研究、植物生理学和动物生长曲线等经常出现曲线比较问题的领域是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oyet, Alwell其他文献
Oyet, Alwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oyet, Alwell', 18)}}的其他基金
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Analyzing unequally spaced familial-longitudinal and familial-spatial data
分析不等距的家族纵向和家族空间数据
- 批准号:
RGPIN-2019-05694 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Wavelets in robust designs and longitudinal time series analysis
稳健设计中的小波和纵向时间序列分析
- 批准号:
217396-2008 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Wavelets in robust designs and longitudinal time series analysis
稳健设计中的小波和纵向时间序列分析
- 批准号:
217396-2008 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Wavelets in robust designs and longitudinal time series analysis
稳健设计中的小波和纵向时间序列分析
- 批准号:
217396-2008 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Wavelets in robust designs and longitudinal time series analysis
稳健设计中的小波和纵向时间序列分析
- 批准号:
217396-2008 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Wavelets and applications in nonparametric regression
小波及其在非参数回归中的应用
- 批准号:
217396-2003 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Wavelets and applications in nonparametric regression
小波及其在非参数回归中的应用
- 批准号:
217396-2003 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Development and implementation of protected area introduction designs that are robust to future uncertainties
开发和实施对未来不确定性具有鲁棒性的保护区引入设计
- 批准号:
23H03585 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
- 批准号:
RGPIN-2020-05283 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Robust regression designs for models with possible misspecification of change points
针对可能错误指定变化点的模型进行稳健回归设计
- 批准号:
575000-2022 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
University Undergraduate Student Research Awards
Implanted but not forgotten: identifying and testing pragmatic strategies to improve inferior vena cava filter retrieval
植入但不被遗忘:识别和测试改善下腔静脉滤器回收的实用策略
- 批准号:
10428918 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Reserach: SHF:Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Designs
协作研究:SHF:Medium:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
- 批准号:
2107373 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Topics in Threshold Models: Efficient Procedures under Endogeneity in Regression Discontinuity Designs and Distributed and Robust Estimation of Change-Points
阈值模型主题:回归间断设计中内生性下的有效程序以及变化点的分布式鲁棒估计
- 批准号:
2113364 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
- 批准号:
RGPIN-2020-05283 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Robust Designs Inspired by Biological Chiral Structures
受生物手性结构启发的稳健设计
- 批准号:
DE200100887 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Early Career Researcher Award