Packing functions, multidimentional expanders and rigidity
保压功能、多维扩展器和刚性
基本信息
- 批准号:392615-2010
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - Doctoral
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
没有摘要--Aucun Sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liokumovich, Yevgeniy其他文献
Liokumovich, Yevgeniy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liokumovich, Yevgeniy', 18)}}的其他基金
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
DGECR-2019-00257 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Launch Supplement
Packing functions, multidimentional expanders and rigidity
保压功能、多维扩展器和刚性
- 批准号:
392615-2010 - 财政年份:2012
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Packing functions, multidimentional expanders and rigidity
保压功能、多维扩展器和刚性
- 批准号:
392615-2010 - 财政年份:2011
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Some problems in metric geometry
度量几何中的一些问题
- 批准号:
382623-2009 - 财政年份:2009
- 资助金额:
$ 2.55万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 2.55万 - 项目类别:
Studentship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
2894877 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Studentship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
BB/Y512527/1 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Research Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Fellowship Award
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2416250 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant