Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
基本信息
- 批准号:RGPIN-2019-06912
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research program concerns existence and properties of minimal and constant curvature surfaces in Riemannian manifolds. Soap bubbles and trajectories of charged particles in a magnetic field are some of the real world examples of these phenomena. More generally, problems in minimal surface theory are closely related to many problems in partial differential equations, general relativity, engineering and many other areas. ******In 1960s Almgren suggested a new technique for the construction of minimal surfaces in closed manifolds, which is now known as the Almgren-Pitts Min-Max Theory. In the last several years the Min-Max Theory has experienced a renaissance. The proof of the Willmore conjecture by Marques and Neves was one remarkable achievement with many other important results that followed, answering a number of long-standing conjectures. Current research proposal is focused on some fundamental questions about families of cycles in connection with problems in Min-Max Theory and with applications in geometry and topology.******This research project lies at the interface of Geometric calculus of variations and quantitative topology. It contains a number of problems related to the geometric properties of the space of flat cycles in a Riemannian manifold and existence of families of cycles satisfying certain special conditions with the goal of obtaining information about regularity, geometry and topology of min-max minimal hypersurfaces. The project relies on techniques and ideas developed by Gromov, Guth, Marques and Neves, as well as other ideas from topology, geometric measure theory and analysis.**
建议的研究计划涉及的存在性和性质的最小和常曲率曲面的黎曼流形。肥皂泡和带电粒子在磁场中的轨迹是这些现象的真实的例子。更一般地说,极小曲面理论中的问题与偏微分方程、广义相对论、工程和许多其他领域中的许多问题密切相关。* 在1960年代,Almgren提出了一种新的技术,用于在闭流形中构造极小曲面,现在称为Almgren-Pitts Min-Max Theory。在过去的几年里,最小-最大理论经历了一次复兴。马奎斯和内维斯对威玛猜想的证明是一个了不起的成就,随后又有许多其他重要的结果,回答了一些长期存在的问题。目前的研究计划集中在与极小极大理论中的问题以及几何和拓扑学中的应用有关的循环族的一些基本问题上。这个研究项目是在接口的几何变分法和定量拓扑学。它包含了一些问题有关的几何性质的空间平坦的周期在黎曼流形和存在的家庭的周期满足某些特殊条件的目标是获得信息的正则性,几何和拓扑的最小最大极小超曲面。该项目依赖于Gromov,Guth,Marques和Neves开发的技术和思想,以及来自拓扑学,几何测量理论和分析的其他思想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liokumovich, Yevgeniy其他文献
Liokumovich, Yevgeniy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liokumovich, Yevgeniy', 18)}}的其他基金
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
DGECR-2019-00257 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Launch Supplement
Packing functions, multidimentional expanders and rigidity
保压功能、多维扩展器和刚性
- 批准号:
392615-2010 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Packing functions, multidimentional expanders and rigidity
保压功能、多维扩展器和刚性
- 批准号:
392615-2010 - 财政年份:2011
- 资助金额:
$ 2.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Packing functions, multidimentional expanders and rigidity
保压功能、多维扩展器和刚性
- 批准号:
392615-2010 - 财政年份:2010
- 资助金额:
$ 2.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Some problems in metric geometry
度量几何中的一些问题
- 批准号:
382623-2009 - 财政年份:2009
- 资助金额:
$ 2.26万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
微阵列技术表面修饰Sapeptide膜结构支架诱导神经干细胞定向迁徙的研究
- 批准号:30901511
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
- 批准号:
10639551 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Microscope for quantitative 3-D characterization of nano- and microstructured surfaces
用于纳米和微米结构表面定量 3D 表征的显微镜
- 批准号:
512068138 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Major Research Instrumentation
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Instrument Development: Creating a Tunable, Broad bandwidth 2D IR Microscope for Quantitative Imaging of Chemical Dynamics Near Reactive Surfaces
仪器开发:创建可调谐、宽带 2D 红外显微镜,用于对反应表面附近的化学动力学进行定量成像
- 批准号:
2108346 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
RAPID:Comparative quantitative microbial risk assessment of COVID-19 transmission through droplets, aerosols and contaminated surfaces
RAPID:对通过飞沫、气溶胶和污染表面传播的 COVID-19 进行比较定量微生物风险评估
- 批准号:
2027306 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
AI assisted quantitative visual inspection of 3D surfaces
AI辅助3D表面定量视觉检测
- 批准号:
87078 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative R&D
Quantitative mechanical phenotyping of bacterial biofilms on implant surfaces
种植体表面细菌生物膜的定量机械表型
- 批准号:
10112948 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别: