Statistical methods for administrative data

行政数据的统计方法

基本信息

  • 批准号:
    227187-2011
  • 负责人:
  • 金额:
    $ 0.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2011
  • 资助国家:
    加拿大
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

As a biostatistician, I develop novel statistical methods to improve the design and analysis of studies and work collaboratively on many projects. While my proposal features topics that are motivated by real data and problems related to disease cluster detection, correlated data, and administrative data sources, my methodology could be applied to many other areas in science, engineering, and industry. Disease cluster detection methods are a special type of spatial statistical method that can be used to identify geographic areas with excess cases of disease (called clusters or hot spots). These methods are important for health authorities to be able to monitor populations for diseases in order to target areas for further investigation or intervention. My recent work in this area includes creating a cluster detection method that detects suspected clusters of disease-related events such as emergency department (ED) visits. My proposed research in this area will incorporate time into the cluster detection methods, adapt methods to include errors in administrative data, and determine criteria when rate calculations would agree with detection. The work will include algebraic derivations and manipulations, and computer simulation studies. These new advances will be important for researchers and administrators conducting surveillance of disease or disease-related events, a timely topic with recent pandemic concerns. Other types of correlated data are also of interest for additional research objectives. When multiple responses can be obtained from individuals, like multiple ED visits, the data are correlated and traditional approaches of testing association between two variables will not be valid. I propose to provide new statistical tests for this situation using a resampling method so that strict distributional assumptions are not required. When multiple administrative data sources are combined, and it is desirable to classify subjects into groups, I will investigate principal component analyses. These objectives will also include algebraic derivations and manipulations and computer simulation studies. My research will provide new and valid approaches for assessing associations and classifying individuals into groups, key goals for many applied research projects.
作为一名生物统计学家,我开发了新颖的统计方法,以改善研究的设计和分析,并在许多项目上合作。虽然我的提案的主题是由真实的数据和疾病集群检测相关的问题,相关数据和管理数据源,我的方法可以应用于科学,工程和工业的许多其他领域。疾病聚类检测方法是一种特殊类型的空间统计方法,可用于识别具有过量疾病病例的地理区域(称为聚类或热点)。这些方法对于卫生当局能够监测人口的疾病以便确定进一步调查或干预的目标地区非常重要。我最近在这一领域的工作包括创建一个集群检测方法,检测可疑的疾病相关事件集群,如急诊科(艾德)访问。我在这一领域的研究将把时间纳入集群检测方法,调整方法,包括管理数据中的错误,并确定标准时,率计算将与检测一致。这项工作将包括代数推导和操作,以及计算机模拟研究。这些新的进展将是重要的研究人员和管理人员进行监测的疾病或疾病相关的事件,一个及时的主题与最近的流行病的关注。其他类型的相关数据也对其他研究目标感兴趣。当可以从个人获得多个响应时,如多次艾德访问,数据是相关的,并且测试两个变量之间的关联的传统方法将是无效的。我建议提供新的统计测试,这种情况下使用reservation方法,使严格的分布假设是不需要的。当多个管理数据源相结合,它是可取的主题分类成组,我将研究主成分分析。这些目标也将包括代数推导和操作和计算机模拟研究。我的研究将提供新的和有效的方法来评估协会和个人分类成组,许多应用研究项目的关键目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosychuk, Rhonda其他文献

Intubation practices and outcomes for patients with suspected or confirmed COVID-19: a national observational study by the Canadian COVID-19 Emergency Department Rapid Response Network (CCEDRRN).
  • DOI:
    10.1007/s43678-023-00487-1
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Leeies, Murdoch J.;Rosychuk, Rhonda;Ismath, Muzeen;Xu, Ke;Archambault, Patrick T.;Fok, Patrick;Audet, Thomas;Jelic, Tomislav;Hayward, Jake;Daoust, Raoul;Chandra, Kavish;Davis, Phil W.;Yan, Justin P.;Hau, Jeffrey;Welsford, Michelle C.;Brooks, Steven M.;Hohl, Corinne
  • 通讯作者:
    Hohl, Corinne
A comparative evaluation of the strengths of association between different emergency department crowding metrics and repeat visits within 72 hours
  • DOI:
    10.1007/s43678-021-00234-4
  • 发表时间:
    2021-12-18
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    McRae, Andrew D.;Rowe, Brian H.;Rosychuk, Rhonda
  • 通讯作者:
    Rosychuk, Rhonda
The burden of incidental SARS-CoV-2 infections in hospitalized patients across pandemic waves in Canada.
  • DOI:
    10.1038/s41598-023-33569-2
  • 发表时间:
    2023-04-24
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    McAlister, Finlay;Hau, Jeffrey;Atzema, Clare;McRae, Andrew;Morrison, Laurie;Grant, Lars;Cheng, Ivy;Rosychuk, Rhonda;Hohl, Corinne M.
  • 通讯作者:
    Hohl, Corinne M.
Diagnostic yield of screening for SARS-CoV-2 among patients admitted to hospital for alternate diagnoses: an observational cohort study.
  • DOI:
    10.1136/bmjopen-2021-057852
  • 发表时间:
    2022-08-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Davis, Philip;Rosychuk, Rhonda;Hau, Jeffrey P.;Cheng, Ivy;McRae, Andrew D.;Daoust, Raoul;Lang, Eddy;Turner, Joel;Khangura, Jaspreet;Fok, Patrick T.;Stachura, Maja;Brar, Baljeet;Hohl, Corinne M.
  • 通讯作者:
    Hohl, Corinne M.

Rosychuk, Rhonda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosychuk, Rhonda', 18)}}的其他基金

Statistical Methods for Repeated Events
重复事件的统计方法
  • 批准号:
    RGPIN-2016-05182
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Repeated Events
重复事件的统计方法
  • 批准号:
    RGPIN-2016-05182
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Repeated Events
重复事件的统计方法
  • 批准号:
    RGPIN-2016-05182
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Repeated Events
重复事件的统计方法
  • 批准号:
    RGPIN-2016-05182
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Repeated Events
重复事件的统计方法
  • 批准号:
    RGPIN-2016-05182
  • 财政年份:
    2016
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for administrative data
行政数据的统计方法
  • 批准号:
    227187-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for administrative data
行政数据的统计方法
  • 批准号:
    227187-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for administrative data
行政数据的统计方法
  • 批准号:
    227187-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for administrative data
行政数据的统计方法
  • 批准号:
    227187-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Biostatistical techniques in diagnostic medicine
诊断医学中的生物统计技术
  • 批准号:
    227187-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
  • 批准号:
    10797593
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
Statistical Methods for High-Dimensional Administrative Data
高维行政数据的统计方法
  • 批准号:
    RGPIN-2017-04363
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for High-Dimensional Administrative Data
高维行政数据的统计方法
  • 批准号:
    RGPIN-2017-04363
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for High-Dimensional Administrative Data
高维行政数据的统计方法
  • 批准号:
    RGPIN-2017-04363
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for High-Dimensional Administrative Data
高维行政数据的统计方法
  • 批准号:
    RGPIN-2017-04363
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for High-Dimensional Administrative Data
高维行政数据的统计方法
  • 批准号:
    RGPIN-2017-04363
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9120850
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
Statistical methods to localize disease heritability and identify biological mechanisms
定位疾病遗传性并确定生物学机制的统计方法
  • 批准号:
    10379539
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9321418
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9980301
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了