Pseudorandomness and complexity

伪随机性和复杂性

基本信息

  • 批准号:
    298363-2007
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2011
  • 资助国家:
    加拿大
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

Randomness has become an indispensable tool in many areas of computer science: algorithm design, networking, error-correcting codes, cryptography, etc. While the use of randomness is unavoidable for certain applications (e.g., cryptographic constructions), other applications can be made completely deterministic. One of the main challenges of theoretical computer science is to understand the exact power of randomness in computation. In particular, it is a big open question whether every randomized polynomial-time algorithm has an equivalent deterministic polynomial-time algorithm (i.e., can be efficiently derandomized). Answering this question is important for algorithm design, as fast deterministic algorithms are usually preferable to randomized ones. On the other hand, there is a deep connection between trying to derandomize probabilistic algorithms and trying to prove lower bounds on the computational power of Boolean circuits. The latter problem has been actively researched for several decades with the goal of resolving the "P vs. NP" question. However, no strong circuit lower bo unds are known for any explicit Boolean function.
随机性已经成为计算机科学的许多领域中不可或缺的工具:算法设计、网络、纠错码、密码学等。密码构造),其他应用可以完全确定。理论计算机科学的主要挑战之一是理解计算中随机性的确切力量。特别地,是否每个随机化多项式时间算法都具有等效的确定性多项式时间算法(即,可以有效地去随机化)。考虑这个问题对算法设计很重要,因为快速确定性算法通常比随机算法更好。另一方面,试图去随机化概率算法和试图证明布尔电路计算能力的下限之间有着深刻的联系。几十年来,人们一直在积极研究后一个问题,目标是解决“P与NP”问题。然而,没有强电路下界已知的任何显式布尔函数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kabanets, Valentine其他文献

AC0[p] Lower Bounds against MCSP via the Coin Problem
AC0[p] 通过硬币问题针对 MCSP 的下界
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Golovnev, Alexander;Ilango, Rahul;Impagliazzo, Russell;Kabanets, Valentine;Kolokolova, Antonina;Tal, Avishay
  • 通讯作者:
    Tal, Avishay

Kabanets, Valentine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kabanets, Valentine', 18)}}的其他基金

Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Meta-Algorithms versus Circuit Lower Bounds
元算法与电路下界
  • 批准号:
    298363-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Meta-Algorithms versus Circuit Lower Bounds
元算法与电路下界
  • 批准号:
    298363-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Meta-Algorithms versus Circuit Lower Bounds
元算法与电路下界
  • 批准号:
    298363-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Meta-Algorithms versus Circuit Lower Bounds
元算法与电路下界
  • 批准号:
    298363-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Meta-Algorithms versus Circuit Lower Bounds
元算法与电路下界
  • 批准号:
    298363-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Pseudorandomness and complexity
伪随机性和复杂性
  • 批准号:
    298363-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Early Career Researcher Award
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了