Regularity of degenerate elliptic equations and systems, and applications to evolutionary equations and monge-ampere equations

简并椭圆方程和系统的正则性及其在演化方程和蒙日-安培方程中的应用

基本信息

  • 批准号:
    341250-2007
  • 负责人:
  • 金额:
    $ 0.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2011
  • 资助国家:
    加拿大
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

This program is concentrated in different areas of Partial Differential Equations (PDEs), with the common thread that they concern problems where the coefficients are "rough" or where the equations do not satisfy a certain desirable structural assumption (called ellipticity), what makes their treatment more challenging. Such PDEs are of paramount importance in pure and applied sciences, since they greatly contribute to the understanding of phenomena such as heat transfer, market pricing, electrodynamics, and celestial mechanics, among many others.
该程序集中在偏微分方程(PDE)的不同领域,其共同点是它们涉及系数“粗糙”或方程不满足某些理想的结构假设(称为椭圆度)的问题,这使得它们的处理更具挑战性。这样的偏微分方程在纯科学和应用科学中是至关重要的,因为它们极大地促进了对传热、市场定价、电动力学和天体力学等现象的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rios, Cristian其他文献

Rios, Cristian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rios, Cristian', 18)}}的其他基金

Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
AEN-PIMS Bioinformatics and Computational Biology Workshop
AEN-PIMS生物信息学与计算生物学研讨会
  • 批准号:
    516554-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Connect Grants Level 2
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of Degenerate Partial Differential Equations and Applications
简并偏微分方程的正则性及应用
  • 批准号:
    341250-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Standard Grant
Degenerate Elliptic Equations: Regularity of weak solutions with applications
简并椭圆方程:弱解的正则性及其应用
  • 批准号:
    RGPIN-2018-06229
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Degenerate Elliptic Equations: Regularity of weak solutions with applications
简并椭圆方程:弱解的正则性及其应用
  • 批准号:
    RGPIN-2018-06229
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Degenerate Elliptic Equations: Regularity of weak solutions with applications
简并椭圆方程:弱解的正则性及其应用
  • 批准号:
    RGPIN-2018-06229
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Degenerate Elliptic Equations: Regularity of weak solutions with applications
简并椭圆方程:弱解的正则性及其应用
  • 批准号:
    RGPIN-2018-06229
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Degenerate Elliptic Equations: Regularity of weak solutions with applications
简并椭圆方程:弱解的正则性及其应用
  • 批准号:
    RGPIN-2018-06229
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of solutions to infinitely degenerate quasilinear equations. Properties of associated metric spaces. Stochastic processes associated to nonlinear elliptic equations.
无限简并拟线性方程解的正则性。
  • 批准号:
    454854-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Postdoctoral Fellowships
Regularity of solutions to infinitely degenerate quasilinear equations. Properties of associated metric spaces. Stochastic processes associated to nonlinear elliptic equations.
无限简并拟线性方程解的正则性。
  • 批准号:
    454854-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Postdoctoral Fellowships
Regularity of degenerate elliptic equations and systems, and applications to evolutionary equations and monge-ampere equations
简并椭圆方程和系统的正则性及其在演化方程和蒙日-安培方程中的应用
  • 批准号:
    341250-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of degenerate elliptic equations and systems, and applications to evolutionary equations and monge-ampere equations
简并椭圆方程和系统的正则性及其在演化方程和蒙日-安培方程中的应用
  • 批准号:
    341250-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了