Performance monitoring and root-cause diagnosis of industrial model predictive control systems for sustainable energy production
可持续能源生产工业模型预测控制系统的性能监测和根本原因诊断
基本信息
- 批准号:437721-2012
- 负责人:
- 金额:$ 2.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Industries are facing significant challenges on sustainable profits, resources, energy and environment. As the most popular advanced control technology, model predictive control (MPC) has been widely applied to different industries including energy, chemical, materials, mining, power, pulp & paper, and automotive industries. Significant economic profits, energy savings and environmental pollution reductions have been achieved from industrial MPC technology. However, MPC performance often encounters significant degradation, which can cause serious safety incidents, profit losses, reduced energy efficiency and increased environment pollutions in industrial productions. Currently, there are no comprehensive and effective solutions to monitor and particularly diagnose industrial MPC performance. This research project is aimed to develop the novel state-of-the-art techniques for monitoring complex MPC systems and further diagnosing the root causes of performance degradation. With the accurate and reliable diagnosis findings, corrective actions can be automatically taken to optimize the process operation with the best profitability and energy efficiency as well as the lowest environmental emissions and carbon footprints. Moreover, the MPC monitoring and diagnosis system will be integrated into MPC life cycle to facilitate and improve MPC design, commissioning and maintenance in industrial processes. The developed technology will be demonstrated in energy production processes at Shell and further be extended to different kinds of industries as generic technical solutions. It is anticipated that the research inventions of this project will significantly benefit a wide range of industries in Canada with considerable economic, environmental and social values, which include higher productivity, boosted energy efficiency, mitigated carbon emissions and reduced safety incidents. In addition, this research will make substantial knowledge contributions to chemical engineering and particularly process control field with the new findings on monitoring and control theories as well as complex system sustainability.
工业在可持续利润、资源、能源和环境方面面临重大挑战。 模型预测控制(Model Predictive Control,MPC)作为当今最流行的先进控制技术,已广泛应用于能源、化工、材料、矿山、电力、造纸、汽车等行业。工业MPC技术已取得了显著的经济效益、节约能源和减少环境污染。然而,MPC的性能往往会出现严重的下降,这可能会导致严重的安全事故,利润损失,降低能源效率和增加环境污染的工业生产。目前,还没有全面有效的解决方案来监测和特别诊断工业MPC性能。该研究项目旨在开发新的最先进的技术,用于监测复杂的MPC系统,并进一步诊断性能下降的根本原因。凭借准确可靠的诊断结果,可以自动采取纠正措施,以优化流程操作,实现最佳盈利能力和能源效率,以及最低的环境排放和碳足迹。此外,MPC监测和诊断系统将被集成到MPC生命周期中,以促进和改善工业过程中MPC的设计、调试和维护。开发的技术将在壳牌的能源生产过程中进行演示,并进一步扩展到不同类型的行业作为通用技术解决方案。预计该项目的研究发明将使加拿大的众多行业受益匪浅,具有可观的经济、环境和社会价值,包括提高生产力、提高能源效率、减少碳排放和减少安全事故。此外,这项研究将为化学工程,特别是过程控制领域提供大量知识,并在监测和控制理论以及复杂系统可持续性方面取得新的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu, Jie其他文献
Comparison of percutaneous 915 MHz microwave ablation and 2450 MHz microwave ablation in large hepatocellular carcinoma
- DOI:
10.3109/02656731003717574 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:3.1
- 作者:
Liu, Fang-Yi;Yu, Xiao-Ling;Yu, Jie - 通讯作者:
Yu, Jie
Development of nomogram to predict in-hospital death for patients with intracerebral hemorrhage: A retrospective cohort study.
- DOI:
10.3389/fneur.2022.968623 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Hu, Linwang;Yu, Jie;Deng, Jian;Zhou, Hong;Yang, Feng;Lu, Xiaohang - 通讯作者:
Lu, Xiaohang
Hierarchically 3D Porous Ag Nanostructures Derived from Silver Benzenethiolate Nanoboxes: Enabling CO2 Reduction with a Near-Unity Selectivity and Mass-Specific Current Density over 500 A/g
- DOI:
10.1021/acs.nanolett.0c00518 - 发表时间:
2020-04-08 - 期刊:
- 影响因子:10.8
- 作者:
Abeyweera, Sasitha C.;Yu, Jie;Sun, Yugang - 通讯作者:
Sun, Yugang
Gut microbiota and serum metabolome reveal the mechanism by which TCM polysaccharides alleviate salpingitis in laying hens challenged by bacteria.
- DOI:
10.1016/j.psj.2023.103288 - 发表时间:
2024-02 - 期刊:
- 影响因子:4.4
- 作者:
Liu, Jiali;Yan, Pupu;Li, Yana;Yu, Jie;Huang, Yongxi;Bai, Ruonan;Liu, Man;Wang, Ning;Liu, Lian;Zhu, Jun;Xiao, Junhao;Guo, Liwei;Liu, Guoping;Zhang, Fuxian;Yang, Xiaolin;He, Bin;Zeng, Jianguo;Zeng, Xiaoqin - 通讯作者:
Zeng, Xiaoqin
A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
- DOI:
10.1016/j.jprocont.2012.02.012 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:4.2
- 作者:
Yu, Jie - 通讯作者:
Yu, Jie
Yu, Jie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu, Jie', 18)}}的其他基金
Mixture model based batch process monitoring and fault diagnosis for sustainable manufacturing
基于混合模型的可持续制造批量过程监控和故障诊断
- 批准号:
445520-2012 - 财政年份:2012
- 资助金额:
$ 2.6万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
RGD-68Ga@AuNCs PET监测PRMT5通过VEGFA调节肺腺癌血管新生的功能及机制
- 批准号:82372007
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Next generation predictive maintenance for wind turbine blade/hub/rotor through novel online condition monitoring/root cause analysis: MONTURWIND
通过新颖的在线状态监测/根本原因分析对风力涡轮机叶片/轮毂/转子进行下一代预测性维护:MONTUWIND
- 批准号:
10041137 - 财政年份:2023
- 资助金额:
$ 2.6万 - 项目类别:
Collaborative R&D
Reducing food losses in Vertical Farming through root monitoring
通过根部监测减少垂直农业的粮食损失
- 批准号:
10046158 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Grant for R&D
Emerging Diffuse Optical Imaging Technologies for Precision Medicine
用于精准医疗的新兴漫射光学成像技术
- 批准号:
10172056 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Emerging Diffuse Optical Imaging Technologies for Precision Medicine
用于精准医疗的新兴漫射光学成像技术
- 批准号:
10669234 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Emerging Diffuse Optical Imaging Technologies for Precision Medicine
用于精准医疗的新兴漫射光学成像技术
- 批准号:
10490834 - 财政年份:2021
- 资助金额:
$ 2.6万 - 项目类别:
Resting State Connectivity in Primate Spinal Cord
灵长类动物脊髓的静息态连接
- 批准号:
10380085 - 财政年份:2016
- 资助金额:
$ 2.6万 - 项目类别:
Resting State Connectivity in Primate Spinal Cord
灵长类动物脊髓的静息态连接
- 批准号:
10209997 - 财政年份:2016
- 资助金额:
$ 2.6万 - 项目类别:
Resting State Connectivity in Primate Spinal Cord
灵长类动物脊髓的静息态连接
- 批准号:
10579265 - 财政年份:2016
- 资助金额:
$ 2.6万 - 项目类别:
Development of monitoring method of root exudates for efficient food production
开发根系分泌物监测方法以实现高效粮食生产
- 批准号:
25450374 - 财政年份:2013
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monitoring root water uptake processes by the novel combination of magnetic resonance- and neutron imaging.
通过磁共振和中子成像的新颖组合监测根系吸水过程。
- 批准号:
243975263 - 财政年份:2013
- 资助金额:
$ 2.6万 - 项目类别:
Research Grants