Combining granular clustering and classifications in knowledge based networks

在基于知识的网络中结合粒度聚类和分类

基本信息

  • 批准号:
    123746-2007
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Knowledge acquired from databases may be fragmented for two principal reasons: the databases may be physically stored in different locations distributed on a network, or it may be computationally advantageous to apply a data mining technique to subsets of a massive database. In such cases, combining fragmented knowledge is an important issue. Our long term goal is to combine granular clustering and classification results in a knowledge-oriented network. Granular computing typically encompasses algorithms based on fuzzy, rough, and interval sets, which were initially used in classification problems. Recently, researchers have shown that these three representations are useful for modeling overlapping clusters. Fuzzy clustering makes it possible to specify the degree with which a given object belongs to a cluster, instead of a binary description of the membership. The interval and rough set representations allow us to state that an object may belong to more than one cluster. Our proposals that use interval set representations of clusters have been well received by the research community. These approaches were based on Genetic Algorithms, K-means, and Kohonen Self-organizing Maps. We are also collaborating with other researchers on support vector interval set clustering. These interval set representations are more flexible than the conventional crisp clusters and less verbose than the fuzzy clusters. The distributed pieces of databases in a knowledge-oriented network may differ from each other because they contain different features and/or they contain different objects. For our short term goal, we will focus on databases that differ in features used to represent the objects. These features may be semantically different from each other, such as customer spending and customer visits. Or, they may be the same attributes from different time periods, for example, spending in summer versus spending in winter. When two or more significantly different criteria are used in the classification or clustering, it may be desirable to create separate models for each criteria, and then combine the results. We plan to extend this concept by combining conventional and granular classifications and clustering from different time periods.
从数据库获得的知识可能是碎片化的,主要有两个原因:数据库可能物理地存储在网络上分布的不同位置,或者将数据挖掘技术应用于大型数据库的子集可能在计算上有利。在这种情况下,整合碎片化的知识是一个重要的问题。我们的长期目标是在面向知识的网络中结合颗粒聚类和分类结果。颗粒计算通常包括基于模糊集、粗糙集和区间集的算法,这些算法最初用于分类问题。最近,研究人员已经证明这三种表示对于重叠聚类的建模是有用的。模糊聚类可以指定给定对象属于集群的程度,而不是对隶属关系的二元描述。区间和粗糙集表示允许我们声明一个对象可能属于多个集群。我们提出的使用区间集表示聚类的建议得到了研究界的好评。这些方法基于遗传算法、K-means和Kohonen自组织图。我们还与其他研究人员合作研究支持向量区间集聚类。这些区间集表示比传统的清晰聚类更灵活,比模糊聚类更简洁。面向知识的网络中的分布式数据库可能彼此不同,因为它们包含不同的特征和/或它们包含不同的对象。对于我们的短期目标,我们将重点关注用于表示对象的特征不同的数据库。这些功能可能在语义上彼此不同,例如客户支出和客户访问。或者,它们可能是来自不同时间段的相同属性,例如,夏季消费与冬季消费。当在分类或聚类中使用两个或更多明显不同的标准时,可能需要为每个标准创建单独的模型,然后组合结果。我们计划通过结合来自不同时间段的传统和颗粒分类和聚类来扩展这个概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lingras, Pawan其他文献

AEDNav: indoor navigation for locating automated external defibrillator.
  • DOI:
    10.1186/s12911-022-01886-7
  • 发表时间:
    2022-06-20
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Rao, Gaurav;Mago, Vijay;Lingras, Pawan;Savage, David W.
  • 通讯作者:
    Savage, David W.
Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification
  • DOI:
    10.1016/j.ins.2007.03.028
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Lingras, Pawan;Butz, Cory
  • 通讯作者:
    Butz, Cory
Rough Cluster Quality Index Based on Decision Theory
基于决策理论的粗聚类质量指标
Granular meta-clustering based on hierarchical, network, and temporal connections
  • DOI:
    10.1007/s41066-015-0007-9
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Lingras, Pawan;Haider, Farhana;Triff, Matt
  • 通讯作者:
    Triff, Matt
Qualitative and quantitative combinations of crisp and rough clustering schemes using dominance relations

Lingras, Pawan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lingras, Pawan', 18)}}的其他基金

Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Medical Diagnosis using Raman Spectrographs and Machine Learning
使用拉曼光谱仪和机器学习进行医疗诊断
  • 批准号:
    521157-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Engage Grants Program
Adaptive recognition of time series of images for warehouse inventory cataloging
用于仓库库存编目的时间序列图像的自适应识别
  • 批准号:
    494282-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive recognition of time series of images for warehouse inventory cataloging
用于仓库库存编目的时间序列图像的自适应识别
  • 批准号:
    494282-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Collaborative Research and Development Grants
Recursive and iterative clustering in granular hierarchical, network, and temporal datasets
粒度分层、网络和时间数据集中的递归和迭代聚类
  • 批准号:
    123746-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Updating server inventory database through image recognition
通过图像识别更新服务器库存数据库
  • 批准号:
    485507-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Engage Grants Program
Recursive and iterative clustering in granular hierarchical, network, and temporal datasets
粒度分层、网络和时间数据集中的递归和迭代聚类
  • 批准号:
    123746-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Studentship
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Early Career Researcher Award
Realizing Carbon Neutrality and Resource/Energy Self-sufficiency in Wastewater Treatment Plants by Integrating Three Functional Granular Sludges
通过整合三种功能的颗粒污泥实现污水处理厂的碳中和和资源/能源自给自足
  • 批准号:
    24H00767
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A novel granular stress sensor for soil exploration
一种用于土壤勘探的新型颗粒应力传感器
  • 批准号:
    DP240101464
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Projects
A multi-scale theory for solid-granular transition due to fragmentation
碎裂引起的固体颗粒转变的多尺度理论
  • 批准号:
    DP240101206
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Projects
Re4Rail: AI and digital twin-based automated technology to real-time repair, reuse, recycle and repurpose railway granular media
Re4Rail:基于人工智能和数字孪生的自动化技术,可实时修复、再利用、回收和重新利用铁路颗粒介质
  • 批准号:
    EP/Y015401/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Fellowship
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
  • 批准号:
    EP/X028771/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Fellowship
Solids volume fraction of size-disperse dense granular flows
尺寸分散致密颗粒流的固体体积分数
  • 批准号:
    2905654
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Studentship
Collaborative Research: Elasto-Granular Interactions Between Morphing Skins and Soils
合作研究:变形皮肤和土壤之间的弹力颗粒相互作用
  • 批准号:
    2228271
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了