Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
基本信息
- 批准号:EP/X028771/1
- 负责人:
- 金额:$ 42.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fluid-driven granular processes are commonplace throughout the industrial and natural worlds. A large share of global energy consumption relates to the processing of grains and particulate matter in construction, agriculture, the pharmaceutical industry, and the food and energy sectors. Meanwhile, erosion in rivers and underneath glaciers, as well as natural hazards such as landslip and sinkhole formation, are exacerbated by changing precipitation patterns and the melting of land ice caused by climate change. As we strive to achieve net zero, it is vital that we develop a comprehensive understanding of the physics of granular flow, both to reduce our carbon footprint and to better manage rapid changes in our geophysical environment.Grain flows driven by fluid remain poorly understood. The fluid's influence on the grains, the friction between the granular material, and the properties of the grains themselves all result in highly complex behaviour. The FFDflow fellowship will carry out extensive laboratory experiments to observe fluid-driven flows across a wide range of conditions to reveal their underlying physics, taking into consideration all of these aspects. These flows will also be explored using theoretical models and computer simulation forming part of a collaborative benchmark study to validate a variety of models for use in fluid-driven granular flows.The FFDflow fellowship will also study how fluid-driven flows can occur in the till underneath glaciers. This is a particularly pressing matter as the acceleration of marine-terminating ice streams (corridors of fast flowing ice) is a source of huge uncertainty regarding sea-level rise, and the dynamics of ice streams is largely controlled by processes occurring at and around the interface between ice and the bed. A series of experiments will be performed using a laboratory setup designed to explore the environment underneath a glacier, with the aim of obtaining a better understanding of the way in which grain flow arises in these settings and how it might impact the ice above.
流体驱动的颗粒过程在整个工业和自然世界中都很普遍。全球能源消耗的很大一部分与建筑,农业,制药行业以及粮食和能源领域的谷物和颗粒物的处理有关。同时,河流和冰川下方的侵蚀,以及诸如山坡和下水道形成之类的自然危害,通过变化的降水模式和气候变化引起的陆上冰的融化加剧。当我们努力达到零时,至关重要的是,我们至关重要的是,我们对颗粒流的物理学有了全面的理解,既可以减少碳足迹,又要更好地管理地球物理环境中的快速变化。由液体驱动的晶粒流仍然知之甚少。流体对谷物的影响,颗粒材料之间的摩擦以及谷物本身的特性都导致了高度复杂的行为。 FFDFLOW奖学金将进行广泛的实验室实验,以观察到各种条件的流体驱动的流动,以揭示其潜在的物理学,并考虑到所有这些方面。这些流程还将使用理论模型和计算机模拟构成协作基准研究的一部分,以验证用于流体驱动的颗粒流量的各种模型的一部分。FFDFLOW奖学金还将研究如何在静止冰川下进行流体驱动的流动。这是一个特别紧迫的物质,因为海洋终止冰流的加速度(快速流动冰的走廊)是海平面上升的巨大不确定性的来源,冰流的动力学在很大程度上受到冰与床之间界面和床之间界面和周围周围的过程的控制。将使用旨在探索冰川下面的环境的实验室设置进行一系列实验,以便更好地了解这些环境中谷物流的方式以及如何影响上面的冰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miles Morgan其他文献
Investigating Glycemic Control in Patients Undergoing Lower Extremity Bypass within an Enhanced Recovery Pathway at a Single Institution.
在单一机构的加速康复途径中研究接受下肢搭桥术的患者的血糖控制情况。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
C. A. Banks;Z. Novák;A. Beck;Benjamin J. Pearce;Mark A. Patterson;M. Passman;D. Sutzko;Marvi Tariq;Miles Morgan;E. Spangler - 通讯作者:
E. Spangler
Endovascular Salvage for Early Failure of Arteriovenous Fistulas
- DOI:
10.1016/j.avsg.2023.11.014 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Miles Morgan;Danielle Frischmann;Andrew J. Soo Hoo;Gautam Agarwal - 通讯作者:
Gautam Agarwal
Miles Morgan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
纳米塑料暴露于生物体液中的凝聚动力学机制研究
- 批准号:42377418
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:12272390
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
- 批准号:11932009
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
- 批准号:11902321
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 42.24万 - 项目类别:
Collaborative R&D
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
- 批准号:
DE240100755 - 财政年份:2024
- 资助金额:
$ 42.24万 - 项目类别:
Discovery Early Career Researcher Award
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 42.24万 - 项目类别:
Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
$ 42.24万 - 项目类别:
Collaborative R&D
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
- 批准号:
2903462 - 财政年份:2024
- 资助金额:
$ 42.24万 - 项目类别:
Studentship