Set-theoretic structure of topological spaces
拓扑空间的集合论结构
基本信息
- 批准号:3185-2010
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Compact topological spaces are abstract structures much used in contemporary mathematical research. Inspired by geometry, but devoid of typically complex geometric structure, one could reasonably hope that their combinatorial structure would be simple and elementary. This is emphatically not the case. In fact there are many simply stated questions about compact topological spaces that are unresolved. Furthermore there is a growing number of such questions which cannot possibly be resolved today. That is, these statements can neither be logically proved nor logically disproved based upon commonly accepted mathematical principles. This research deals with such issues: in particular, the types of subspaces compact topological spaces must have. As well, when such spaces are partitioned into pieces, we investigate which sorts of subspaces must necessarily be included in at least one piece of the partition.
紧拓扑空间是现代数学研究中常用的抽象结构。受几何学的启发,但没有典型的复杂几何结构,人们可以合理地希望它们的组合结构是简单和基本的。事实显然并非如此。事实上,关于紧致拓扑空间有许多简单明了的问题尚未解决。此外,此类问题越来越多,今天不可能得到解决。也就是说,这些陈述既不能在逻辑上证明,也不能根据普遍接受的数学原理在逻辑上证明。本文主要研究了紧拓扑空间的子空间类型。同样,当这样的空间被划分成块时,我们研究哪些类型的子空间必须包含在至少一个分区中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiss, William其他文献
Strong community-based health systems and national governance predict improvement in coverage of oral rehydration solution (ORS): a multilevel longitudinal model
- DOI:
10.7189/jogh.10.010503 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:7.2
- 作者:
Andrus, Althea;Cohen, Robert;Weiss, William - 通讯作者:
Weiss, William
Saving Mothers, Giving Life: It Takes a System to Save a Mother (Republication)
- DOI:
10.9745/ghsp-d-19-00092 - 发表时间:
2019-03-22 - 期刊:
- 影响因子:4
- 作者:
Conlon, Claudia Morrissey;Serbanescu, Florina;Weiss, William - 通讯作者:
Weiss, William
Measuring results of humanitarian action: adapting public health indicators to different contexts.
- DOI:
10.1186/s13031-022-00487-5 - 发表时间:
2022-10-14 - 期刊:
- 影响因子:3.6
- 作者:
Altare, Chiara;Weiss, William;Ramadan, Marwa;Tappis, Hannah;Spiegel, Paul B. - 通讯作者:
Spiegel, Paul B.
Availability of health facilities and utilization of maternal and newborn postnatal care in rural Malawi
- DOI:
10.1186/s12884-019-2534-x - 发表时间:
2019-12-17 - 期刊:
- 影响因子:3.1
- 作者:
Kim, Eunsoo Timothy;Singh, Kavita;Weiss, William - 通讯作者:
Weiss, William
In Vivo Evaluation of a Physiologic Control System for Rotary Blood Pumps Based on the Left Ventricular Pressure-Volume Loop.
- DOI:
10.1097/mat.0000000000001619 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:4.2
- 作者:
Cysyk, Joshua;Jhun, Choon-Sik;Newswanger, Ray;Pae, Walter;Izer, Jenelle;Flory, Heidi;Reibson, John;Weiss, William;Rosenberg, Gerson - 通讯作者:
Rosenberg, Gerson
Weiss, William的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiss, William', 18)}}的其他基金
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic Structure of Compact Topological Spaces
紧拓扑空间的集合论结构
- 批准号:
RGPIN-2016-06541 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Set-theoretic structure of topological spaces
拓扑空间的集合论结构
- 批准号:
3185-2010 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual