Large-Scale Machine Learning: Sparse Representations for Signal/Image Processing and System Modeling
大规模机器学习:信号/图像处理和系统建模的稀疏表示
基本信息
- 批准号:8131-2012
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2012
- 资助国家:加拿大
- 起止时间:2012-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid advances in computer based technologies such as energy grid networks, web services, bioinformatics, and sensor networks, create a great demand for new pattern recognition/machine learning algorithms able to cope with massive data sets, multiple hypothesis, and data of high dimensionality. This defines the field referred to as large-scale machine learning. In this proposal, I wish to extend my current research on nonparametric/semiparametric learning methods to large-scale machine learning problems. This challenge includes not only the development of new mathematical techniques, but also to verify them in the framework of signal/image processing and system modeling tasks. Testing of the proposed methods in concrete applications within the areas of power engineering, microscopic imaging and multiple change-point detection for biological and network signals is also planned. Our research proposal relies on the idea of blending the modern nonparametric/semiparametric learning methodology with the concept of sparse representations of a given process. The sparsity is roughly defined as a solution to the examined problem based on the representation using a small number of dominating terms. The key is to discover a sparse (low-dimensional) representation and its form in a given setting. Thus far, sparse learning algorithms have mostly focused on parametric (finite dimensional) linear models, where an observed data point is expressed as a linear combination of a small number of vectors of the representation matrix (dictionary). In this proposal we aim at developing a class of nonparametric and semiparametric learning algorithms that utilize the inherent sparsity of a given object. Hence, we wish to go beyond the thus far used linear and finite dimensional sparsity models and apply these findings to problems stemming from multidimensional systems, computational symmetry and multiple change-point detection problems. We believe that the proposed sparse object representation methodology can substantially enlarge a scope of machine learning applications and improve the existing algorithms within the context of proposed case studies.
基于计算机的技术的快速发展,例如能源网格网络、Web服务、生物信息学和传感器网络,产生了对能够科普海量数据集、多假设和高维数据的新模式识别/机器学习算法的巨大需求。这定义了被称为大规模机器学习的领域。在这个提案中,我希望将我目前对非参数/半参数学习方法的研究扩展到大规模机器学习问题。这一挑战不仅包括新的数学技术的发展,而且要在信号/图像处理和系统建模任务的框架中验证它们。还计划在电力工程、显微成像和生物和网络信号的多个变点检测领域内的具体应用中测试所提出的方法。我们的研究建议依赖于现代非参数/半参数学习方法与给定过程的稀疏表示概念相结合的想法。稀疏性被粗略地定义为基于使用少量主导项的表示的所研究问题的解决方案。关键是发现稀疏(低维)表示及其在给定设置中的形式。到目前为止,稀疏学习算法主要集中在参数(有限维)线性模型上,其中观察到的数据点表示为表示矩阵(字典)的少量向量的线性组合。在这个建议中,我们的目标是开发一类非参数和半参数的学习算法,利用一个给定的对象的固有稀疏性。因此,我们希望超越迄今为止使用的线性和有限维稀疏模型,并将这些发现应用于多维系统,计算对称性和多个变点检测问题。我们相信,所提出的稀疏对象表示方法可以大大扩大机器学习应用的范围,并在所提出的案例研究的背景下改进现有的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pawlak, Mirek其他文献
Pawlak, Mirek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pawlak, Mirek', 18)}}的其他基金
Large-Scale Machine Learning: Sparse Representations for Signal/Image Processing and System Modeling
大规模机器学习:信号/图像处理和系统建模的稀疏表示
- 批准号:
8131-2012 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Machine Learning: Sparse Representations for Signal/Image Processing and System Modeling
大规模机器学习:信号/图像处理和系统建模的稀疏表示
- 批准号:
8131-2012 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Machine Learning: Sparse Representations for Signal/Image Processing and System Modeling
大规模机器学习:信号/图像处理和系统建模的稀疏表示
- 批准号:
8131-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Machine Learning: Sparse Representations for Signal/Image Processing and System Modeling
大规模机器学习:信号/图像处理和系统建模的稀疏表示
- 批准号:
8131-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric learning in signal processing, communication systems and pattern recognition
信号处理、通信系统和模式识别中的半参数学习
- 批准号:
8131-2007 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cooperative Virtual Synchronous Machine Control of Multiple Inverters Using Low-Speed Communication to Achieve Large-Scale Installation of Renewable Energy
利用低速通信的多台逆变器协同虚拟同步机控制实现可再生能源大规模安装
- 批准号:
23H01395 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Decrypting the genetic architecture of heart failure imaging signatures through machine learning in large-scale genome-wide association studies
在大规模全基因组关联研究中通过机器学习解密心力衰竭成像特征的遗传结构
- 批准号:
MR/X020924/1 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Fellowship
Fully automatic large-scale rock shearing machine in a cold chamber
冷室全自动大型岩石剪切机
- 批准号:
524663687 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Major Research Instrumentation
Distributed Machine Learning Methodology and System for Real-time Inference with Large-scale Point Clouds Towards Mobility Innovation
利用大规模点云进行实时推理的分布式机器学习方法和系统,迈向移动创新
- 批准号:
23H00464 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2348306 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
Large-Scale Machine Learning
大规模机器学习
- 批准号:
CRC-2019-00358 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs