Probability Limit Theorems and Statistical Applications

概率极限定理和统计应用

基本信息

  • 批准号:
    227089-2009
  • 负责人:
  • 金额:
    $ 2.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Many of the best-known results in probability concern the asymptotic behavior of distributions; probability limit theory lies at the heart of probability and statistics. Probability limit theorems are concerned with rates of approximation of various observable processes by theoretically recognizable ones. For example, consider a random sample of n observations selected from a population with a finite variance. The central limit theorem states that, when the sample size n is sufficiently large, the sampling distribution of the sum of the n observations will be approximately normally distributed. Thus the central limit theorem allows us to make inferences on the mean of a distribution based on relatively large samples without having to know the exact form of the sampled population. There is a wide variety of statistical applications of probability limit theorems such as the analysis of large data sets, modelling traffic flow in communication networks, and providing a catalyst toward understanding and discussing the role of biostatistical research in relation to health services and decisions. The main focus of this research proposal will be on investigating the asymptotic behavior in statistical applications pertaining to hierarchical models, L-statistics, U-statistics, resampling methods, and the contemporary multivariate data analysis problems such as the largest entry of a sample correlation matrix, misspecified model, kernel estimator of the regression in a left truncation model, etc. A second focus relates to my long-standing research interest in almost sure and weak convergence of random processes, especially in the law of the iterated logarithm, the laws of large numbers, central limit theorems, probabilities of large or moderate deviations, and precise asymptotics in the classical limit theorems for real-valued or Banach-space-valued random processes. The goal are to develop new methods for proving limit theorems and to investigate statistical applications of these theorems. This provides a beautiful interplay between the theory and applications of Statistics, Probability, and Stochastic Processes. The results related to this proposal will be novel and significant insofar as they will extend, generalize, and refine earlier work in the literature.
概率论中许多最著名的结果都与分布的渐近行为有关;概率极限理论是概率论和统计学的核心。概率极限定理是关于各种可观测过程被理论上可识别的过程逼近的速率。例如,考虑从具有有限方差的总体中选择的n个观察值的随机样本。中心极限定理指出,当样本量n足够大时,n个观测值之和的抽样分布近似为正态分布。因此,中心极限定理允许我们在不知道抽样总体的确切形式的情况下,根据相对较大的样本对分布的平均值进行推断。概率极限定理有各种各样的统计应用,例如对大数据集的分析,对通信网络中的交通流量进行建模,以及为理解和讨论生物统计研究在卫生服务和决策方面的作用提供催化剂。本研究计划的主要重点将是研究与分层模型、l统计、u统计、重采样方法有关的统计应用中的渐近行为,以及当代多元数据分析问题,如样本相关矩阵的最大条目、错误指定模型、回归的核估计在左截断模型中等。第二个重点与我长期以来对随机过程的几乎确定和弱收敛的研究兴趣有关,特别是在迭代对数定律,大数定律,中心极限定理,大或中等偏差的概率,以及实值或banach -空间值随机过程经典极限定理中的精确渐近性。目标是开发证明极限定理的新方法,并研究这些定理的统计应用。这在统计学、概率论和随机过程的理论和应用之间提供了一个美丽的相互作用。与此建议相关的结果将是新颖和重要的,因为它们将扩展,概括和完善文献中的早期工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, Deli其他文献

The limit law of the iterated logarithm in Banach space
Banach空间中迭代对数的极限定律
  • DOI:
    10.1016/j.spl.2013.04.007
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Li, Deli;Liang, Han-Ying
  • 通讯作者:
    Liang, Han-Ying
Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors.
  • DOI:
    10.1002/advs.202201150
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Yang, Xilin;Zhou, Xiuwen;Zhang, Ye-Xin;Li, Deli;Li, Chensen;You, Caifa;Chou, Tai-Che;Su, Shi-Jian;Chou, Pi-Tai;Chi, Yun
  • 通讯作者:
    Chi, Yun
Deciphering the Morphology Change and Performance Enhancement for Perovskite Solar Cells Induced by Surface Modification.
通过表面修饰诱导的钙钛矿太阳能电池的形态变化和性能增强。
  • DOI:
    10.1002/advs.202205342
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Guan, Nianci;Zhang, Yuezhou;Chen, Wei;Jiang, Zhengyan;Gu, Lei;Zhu, Ruixue;Yadav, Deependra;Li, Deli;Xu, Baomin;Cao, Leifeng;Gao, Xingyu;Chen, Yonghua;Song, Lin
  • 通讯作者:
    Song, Lin
Digital measurement method for comparing the absolute marginal discrepancy of three-unit ceramic fixed dental prostheses fabricated using conventional and digital technologies.
  • DOI:
    10.1186/s12903-023-03620-9
  • 发表时间:
    2023-11-17
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang, Shanshan;Yuan, Fusong;Li, Deli;Jia, Lu;Sun, Yuchun
  • 通讯作者:
    Sun, Yuchun
The Impact of Environmental Regulation on the Green Overall Factor Productivity of Forestry in the Yangtze River Economic Belt
  • DOI:
    10.3390/f14102004
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Li, Deli;Li, Yang;Mendako, Richard K.
  • 通讯作者:
    Mendako, Richard K.

Li, Deli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li, Deli', 18)}}的其他基金

Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2022
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2021
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2020
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Asymptotic Theorems and Their Applications
概率渐近定理及其应用
  • 批准号:
    RGPIN-2019-06065
  • 财政年份:
    2019
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2018
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2017
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2016
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2015
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2014
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Limit Theorems and Statistical Applications
概率极限定理和统计应用
  • 批准号:
    227089-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2018
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2017
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2016
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2015
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Long range dependence: The effect of infinite ergodic theoretical structures on limit theorems in probability
长程依赖性:无限遍历理论结构对概率极限定理的影响
  • 批准号:
    1506783
  • 财政年份:
    2015
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Continuing Grant
Integrable probability and random matrices: 2d structures, limit theorems
可积概率和随机矩阵:二维结构、极限定理
  • 批准号:
    1407562
  • 财政年份:
    2014
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Standard Grant
General Limit Theorems in Probability with Applications to Statistics
概率的一般极限定理及其在统计中的应用
  • 批准号:
    RGPIN-2014-05428
  • 财政年份:
    2014
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Limit theorems in game theoretic probability: Construction of the foundation of probability theory by new approach
博弈论概率中的极限定理:用新方法构建概率论基础
  • 批准号:
    24740063
  • 财政年份:
    2012
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Probability Limit Theorems and Statistical Applications
概率极限定理和统计应用
  • 批准号:
    227089-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
Probability Limit Theorems and Statistical Applications
概率极限定理和统计应用
  • 批准号:
    227089-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了