Integrable probability and random matrices: 2d structures, limit theorems
可积概率和随机矩阵:二维结构、极限定理
基本信息
- 批准号:1407562
- 负责人:
- 金额:$ 14.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to achieve a better understanding of the limit behavior of a class of stochastic systems related to statistical mechanics, random matrix theory and representation theory. Examples of such systems include random stepped surfaces in three-dimensional space which, in particular, model melting crystals; square-ice model which is a mathematical two-dimensional approximation for a thin layer of ice; and interacting particle systems used for modeling (e.g., a one-lane highway, the growth of plankton in the ocean). Our aim is to extract macroscopic properties of very large systems starting from their microscopic definitions, with main accents on the appearance of the universal random fields and distributions.There are two main distinctions of the systems we study. First is that we concentrate on and explore 2d structures which generalize many classical 1d probabilistic models such as eigenvalues of a random matrix. The two-dimensional extensions that we consider give new and often more natural interpretations of earlier one-dimensional results and also pave the way to prove new interesting asymptotic results about well-known one-dimensional models. Second, most models in this research enjoy a rich algebraic structure, which usually means that expectations of many observables can be computed in a concise manner. The techniques include usage of symmetric functions of representation-theoretic origin, eigenfunctions of difference operators, orthogonal polynomials, etc. This exact solvability provides tools for delicate asymptotic analysis and gives access to the properties of the universal objects appearing in the limit, such as Tracy-Widom distributions, the GUE-eigenvalues distribution, the GUE-corners process (its two-dimensional extension), and the Gaussian Free Field. The results obtained for the exactly solvable models are generally believed to extend to a large variety of similar stochastic systems.
本研究的目的是为了更好地理解一类与统计力学、随机矩阵理论和表示理论相关的随机系统的极限行为。这类系统的例子包括三维空间中的随机阶梯表面,特别是模拟融化的晶体;方形冰模型,这是对薄冰的数学二维近似;以及用于模拟的相互作用的粒子系统(例如,单车道公路、海洋中浮游生物的生长)。我们的目标是从超大型系统的微观定义出发,提取它们的宏观性质,重点放在普遍随机场和分布的出现上。我们研究的系统有两个主要区别。首先,我们集中研究和探索了二维结构,这些结构推广了许多经典的一维概率模型,例如随机矩阵的特征值。我们所考虑的二维延拓给出了早期一维结果的新的且往往更自然的解释,也为证明关于著名的一维模型的新的有趣的渐近结果铺平了道路。其次,本研究中的大多数模型都具有丰富的代数结构,这通常意味着可以以简明的方式计算许多可观测对象的预期。这些技术包括使用表示论起源的对称函数、差分算子的特征函数、正交多项式等。这种精确的可解性为精细的渐近分析提供了工具,并提供了出现在极限中的普遍物体的性质,如Tracy-Widom分布、特征值分布、格角过程(其二维扩展)和高斯自由场。对于精确可解模型所得到的结果通常被认为可以推广到许多相似的随机系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Gorin其他文献
Gaussian asymptotics of discrete $\beta $ -ensembles
- DOI:
10.1007/s10240-016-0085-5 - 发表时间:
2016-06-14 - 期刊:
- 影响因子:3.500
- 作者:
Alexei Borodin;Vadim Gorin;Alice Guionnet - 通讯作者:
Alice Guionnet
Block characters of the symmetric groups
- DOI:
10.1007/s10801-012-0394-9 - 发表时间:
2012-08-29 - 期刊:
- 影响因子:0.900
- 作者:
Alexander Gnedin;Vadim Gorin;Sergei Kerov - 通讯作者:
Sergei Kerov
Interlacing adjacent levels of $$\beta $$ –Jacobi corners processes
- DOI:
10.1007/s00440-017-0823-8 - 发表时间:
2018-01-04 - 期刊:
- 影响因子:1.600
- 作者:
Vadim Gorin;Lingfu Zhang - 通讯作者:
Lingfu Zhang
From Alternating Sign Matrices to the Gaussian Unitary Ensemble
- DOI:
10.1007/s00220-014-2084-z - 发表时间:
2014-06-04 - 期刊:
- 影响因子:2.600
- 作者:
Vadim Gorin - 通讯作者:
Vadim Gorin
Heat transfer during film condensation inside plain tubes. Review of experimental research
- DOI:
10.1007/s00231-019-02744-5 - 发表时间:
2019-10-30 - 期刊:
- 影响因子:2.000
- 作者:
Volodymyr Rifert;Volodymyr Sereda;Vadim Gorin;Peter Barabash;Andrii Solomakha - 通讯作者:
Andrii Solomakha
Vadim Gorin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Gorin', 18)}}的其他基金
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
- 批准号:
2152588 - 财政年份:2022
- 资助金额:
$ 14.51万 - 项目类别:
Continuing Grant
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
- 批准号:
2246449 - 财政年份:2022
- 资助金额:
$ 14.51万 - 项目类别:
Continuing Grant
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
- 批准号:
1855458 - 财政年份:2019
- 资助金额:
$ 14.51万 - 项目类别:
Standard Grant
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
- 批准号:
1949820 - 财政年份:2019
- 资助金额:
$ 14.51万 - 项目类别:
Standard Grant
相似国自然基金
非高斯随机分布控制系统的集成故障诊断与容错控制研究
- 批准号:61104022
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 14.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Standard Grant
The Prevalence and Functional Impact of Moral Injury in Veterans
退伍军人道德伤害的患病率和功能影响
- 批准号:
10633476 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Looking through the bottle: Exploring alcohol use among emergency medical service providers
透过瓶子:探索紧急医疗服务提供者的酒精使用情况
- 批准号:
10712278 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Aspirin for Primary Prevention of Cardiovascular Disease in Patients with Elevated Lipoprotein(a)
阿司匹林用于脂蛋白升高患者心血管疾病的一级预防(a)
- 批准号:
10739016 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
- 批准号:
10742205 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
- 批准号:
10635323 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Blood-Based Biomarkers for Personalized Risk Assessment of Breast and Ovarian Cancer
用于乳腺癌和卵巢癌个性化风险评估的血液生物标志物
- 批准号:
10721949 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
自由擬無限分解可能分布の展開
自由伪无限可分分布的展开
- 批准号:
23K03133 - 财政年份:2023
- 资助金额:
$ 14.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)