Algorithms for approximating continuum processes on surfaces
表面连续过程的近似算法
基本信息
- 批准号:227823-2011
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Continuous processes are ubiquitous throughout the applied and natural sciences. Because analytical solutions are rarely possible, the practical importance of accurate and efficient algorithms for the corresponding partial differential equation (PDE) models cannot be overemphasized. There has been a great effort made to develop numerical methods for many important classes of PDEs. These efforts focus on finding solutions in one, two or three spatial dimensions. But problems involving general differential equations also arise on two-dimensional curved surfaces or one-dimensional curved filaments. For example, PDEs on surfaces can be used to place a texture on a computer generated surface, or to enhance or restore a damaged pattern on a scanned surface. In machine recognition of objects, the solution of surface PDEs can be used to characterize the shapes of objects. In material science such equations have been used to examine phase change of a material on a curved surface, while in theoretical biology, PDEs on surfaces arise as part of the modeling bone pathologies such as osteoporosis. Despite the widespread occurrence of PDEs on curved surfaces there is still a need for a systematic approach for effectively computing the solution of general PDEs on general surfaces.
连续过程在应用科学和自然科学中无处不在。由于解析解很少可能实现,因此相应的偏微分方程 (PDE) 模型的准确且高效的算法的实际重要性怎么强调也不为过。人们付出了巨大的努力来开发许多重要类型偏微分方程的数值方法。这些努力的重点是寻找一个、两个或三个空间维度的解决方案。但涉及一般微分方程的问题也出现在二维曲面或一维弯曲细丝上。例如,表面上的偏微分方程可用于在计算机生成的表面上放置纹理,或者增强或恢复扫描表面上损坏的图案。 在物体的机器识别中,表面偏微分方程的解可用于表征物体的形状。 在材料科学中,此类方程已用于检查弯曲表面上材料的相变,而在理论生物学中,表面上的偏微分方程作为骨质疏松症等骨病理学建模的一部分而出现。 尽管偏微分方程在曲面上广泛存在,但仍然需要一种系统方法来有效计算一般曲面上的一般偏微分方程的解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruuth, Steven其他文献
Diffusion generated motion using signed distance functions
- DOI:
10.1016/j.jcp.2009.10.002 - 发表时间:
2010-02-20 - 期刊:
- 影响因子:4.1
- 作者:
Esedoglu, Selim;Ruuth, Steven;Tsai, Richard - 通讯作者:
Tsai, Richard
Ruuth, Steven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruuth, Steven', 18)}}的其他基金
Efficient algorithms for evolving continuum processes on curved surfaces
曲面上演化连续过程的高效算法
- 批准号:
RGPIN-2022-03302 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for continuum processes on complex, moving surfaces
复杂移动表面上连续过程的算法
- 批准号:
RGPIN-2016-04361 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for continuum processes on complex, moving surfaces
复杂移动表面上连续过程的算法
- 批准号:
RGPIN-2016-04361 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for continuum processes on complex, moving surfaces
复杂移动表面上连续过程的算法
- 批准号:
RGPIN-2016-04361 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for continuum processes on complex, moving surfaces
复杂移动表面上连续过程的算法
- 批准号:
RGPIN-2016-04361 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for continuum processes on complex, moving surfaces
复杂移动表面上连续过程的算法
- 批准号:
RGPIN-2016-04361 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for continuum processes on complex, moving surfaces
复杂移动表面上连续过程的算法
- 批准号:
RGPIN-2016-04361 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for approximating continuum processes on surfaces
表面连续过程的近似算法
- 批准号:
227823-2011 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for approximating continuum processes on surfaces
表面连续过程的近似算法
- 批准号:
227823-2011 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for approximating continuum processes on surfaces
表面连续过程的近似算法
- 批准号:
227823-2011 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Learning, Approximating and Minimising Streaming Automata for Large-scale Optimisation
用于大规模优化的学习、逼近和最小化流自动机
- 批准号:
EP/T018313/2 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
Approximating Mechanisms of Suicide Risk to Innovate Interventions for Mid-to-Late-Life Veterans
近似自杀风险机制以创新中晚年退伍军人的干预措施
- 批准号:
10590282 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Approximating Bounded-Angle Minimum Spanning Trees
近似有界角最小生成树
- 批准号:
575757-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Approximating Fixed-Order Scheduling Using Semidefinite Programming
使用半定规划近似固定顺序调度
- 批准号:
575791-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Evaluation of a novel method to improve image quality in angiography by approximating a photon-count
评估通过近似光子计数来提高血管造影图像质量的新方法
- 批准号:
574503-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: QSA: Approximating the Ground States of Non-Stoquastic Hamiltonians Using the Variational Quantum Eigensolver
EAGER:QSA:使用变分量子本征求解器逼近非随机哈密顿量的基态
- 批准号:
2037755 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Approximating shapes with algebraic spline geometry
用代数样条几何近似形状
- 批准号:
2601170 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Enhanced methods for approximating the structure of large networks
近似大型网络结构的增强方法
- 批准号:
DE200101045 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Early Career Researcher Award
Learning, Approximating and Minimising Streaming Automata for Large-scale Optimisation
用于大规模优化的学习、逼近和最小化流自动机
- 批准号:
EP/T018313/1 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant














{{item.name}}会员




