Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures

应用计算机代数的进展来研究经典可积系统和各种代数结构

基本信息

  • 批准号:
    249783-2012
  • 负责人:
  • 金额:
    $ 0.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Processes in nature and sometimes in society are described through variables, like 'temperature', 'electric field' or 'population density'. These variables are related to each other through so-called differential equations. If the process to be described through these equations is complicated then what typically happens is that a kind of disorder sets in and increases constantly, like someones home that does not get cleaned up from time to time. But in rare cases complicated differential equations describe processes where order is maintained automatically, i.e. where structures do not dissolve or dissipate. These structures are called solitons. All this becomes important, for example, if one tries to submit gigantic amounts of information through a fibre optics cable and does not want the information to get mixed up on its way.
自然界中的过程,有时也包括社会中的过程,都是通过变量来描述的,比如“温度”、“电场”或“人口密度”。这些变量通过所谓的微分方程相互关联。如果通过这些方程描述的过程是复杂的,那么通常会发生的是一种混乱的情况,并不断增加,就像某人的家没有得到清理。但在极少数情况下,复杂的微分方程描述的过程是自动保持秩序的,即结构不会溶解或消散。这些结构被称为孤子。 例如,如果有人试图通过光纤电缆提交大量信息,并且不希望信息在途中混淆,那么所有这些都变得很重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wolf, Thomas其他文献

Nanoscopic hydrophilic/hydrophilic phase-separation well below the LCST of polyphosphoesters
  • DOI:
    10.1039/c8cc09788g
  • 发表时间:
    2019-03-21
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Hunold, Johannes;Wolf, Thomas;Hinderberger, Dariush
  • 通讯作者:
    Hinderberger, Dariush
Distinctive Spatiotemporal Stability of Somatic Mutations in Metastasized Microsatellite-stable Colorectal Cancer
  • DOI:
    10.1097/pas.0000000000000423
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Jesinghaus, Moritz;Wolf, Thomas;Weichert, Wilko
  • 通讯作者:
    Weichert, Wilko
Pathogen-specific innate immune response patterns are distinctly affected by genetic diversity.
  • DOI:
    10.1038/s41467-023-38994-5
  • 发表时间:
    2023-06-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Haeder, Antje;Schaeuble, Sascha;Gehlen, Jan;Thielemann, Nadja;Buerfent, Benedikt C.;Schueller, Vitalia;Hess, Timo;Wolf, Thomas;Schroeder, Julia;Weber, Michael;Huenniger, Kerstin;Loeffler, Juergen;Vylkova, Slavena;Panagiotou, Gianni;Schumacher, Johannes;Kurzai, Oliver
  • 通讯作者:
    Kurzai, Oliver
Human adults prefer to cooperate even when it is costly.
A Library of Well-Defined and Water-Soluble Poly(alkyl phosphonate)s with Adjustable Hydrolysis
  • DOI:
    10.1021/acs.macromol.5b00897
  • 发表时间:
    2015-06-23
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Wolf, Thomas;Steinbach, Tobias;Wurm, Frederik R.
  • 通讯作者:
    Wurm, Frederik R.

Wolf, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wolf, Thomas', 18)}}的其他基金

Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Inhaled Aerosol Dosimetry: Advances, Applications, and Impacts on Risk Assessments and Therapeutics
吸入气溶胶剂量测定:进展、应用以及对风险评估和治疗的影响
  • 批准号:
    10752525
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
  • 批准号:
    249783-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了