Development of immersed boundary methods for fluid flow and heat transfer

流体流动和传热的浸没边界方法的开发

基本信息

  • 批准号:
    312052-2010
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

The Immersed Boundary Finite Element Methods (IB-FEM) is well suited to problems involving complex geometries. The method trades the extreme complexity of a boundary conforming grid with simple boundary conditions for a simple grid that does not conform to the boundary and on which a special technique is used to enforce boundary conditions. Several issues currently prevent the IB-FEM from being an efficient cost-effective alternative to traditional approaches. The biggest challenge is the development of a general approach for accurate implementation of boundary conditions along boundary surfaces that are not represented by the mesh to ensure that the IB-FEM yields the same solution as traditional FEM.
浸没边界有限元法(IB-FEM)非常适合于复杂几何形状的问题。该方法将具有简单边界条件的边界符合网格的极端复杂性转换为不符合边界的简单网格,并且在该简单网格上使用特殊技术来强制边界条件。目前有几个问题阻碍了IB-FEM成为传统方法的有效的成本效益替代方案。最大的挑战是开发一种通用方法,用于沿着网格不表示的边界表面精确实现边界条件,以确保IB-FEM产生与传统FEM相同的解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilinca, Florin其他文献

Ilinca, Florin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilinca, Florin', 18)}}的其他基金

Development of immersed boundary methods for fluid flow and heat transfer
流体流动和传热的浸没边界方法的开发
  • 批准号:
    312052-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development of immersed boundary methods for fluid flow and heat transfer
流体流动和传热的浸没边界方法的开发
  • 批准号:
    312052-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development of immersed boundary methods for fluid flow and heat transfer
流体流动和传热的浸没边界方法的开发
  • 批准号:
    312052-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development of immersed boundary methods for fluid flow and heat transfer
流体流动和传热的浸没边界方法的开发
  • 批准号:
    312052-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Stabilized finite element methods for complex problems
复杂问题的稳定有限元方法
  • 批准号:
    312052-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Stabilized finite element methods for complex problems
复杂问题的稳定有限元方法
  • 批准号:
    312052-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Stabilized finite element methods for complex problems
复杂问题的稳定有限元方法
  • 批准号:
    312052-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Stabilized finite element methods for complex problems
复杂问题的稳定有限元方法
  • 批准号:
    312052-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Stabilized finite element methods for complex problems
复杂问题的稳定有限元方法
  • 批准号:
    312052-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
  • 批准号:
    23H01341
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CFD simulations of fluid dynamics in sports science for better performance of athletes
运动科学中流体动力学的 CFD 模拟可提高运动员的表现
  • 批准号:
    20K19503
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Influence of Pore Connectivity on Upscaling Effects of Porous Media Flow
孔隙连通性对多孔介质流放大效应的影响
  • 批准号:
    19H02252
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Lubricated Immersed Boundary Method: Numerical Analysis, Benchmarking, and Applications
润滑浸入边界法:数值分析、基准测试和应用
  • 批准号:
    1913093
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Accurate interface capturing for two-phase flow simulation with immersed boundary method
使用浸入边界法精确捕捉两相流模拟界面
  • 批准号:
    18K03937
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wetting of Elastic Fibres: A Novel Immersed Boundary-Lattice Spring-Lattice Boltzmann Simulation Approach
弹性纤维的润湿:一种新颖的浸入式边界晶格弹簧晶格玻尔兹曼模拟方法
  • 批准号:
    EP/P007139/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Simulation of Moving Objects on an Cartesian Mesh Using an Improved Alternating Direction Forcing Immersed Boundary Method
使用改进的交替方向强制浸没边界法模拟笛卡尔网格上的运动物体
  • 批准号:
    2091216
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Surface-mounted bluff bodies immersed in deep turbulent boundary layers
浸没在深层湍流边界层中的表面安装钝体
  • 批准号:
    519892-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
A Fundamental Study on analysis of pore structure of porous media and elucidation of generation mechanism of turbulence based on the analysis
多孔介质孔隙结构分析及基于分析阐明湍流产生机理的基础研究
  • 批准号:
    16H04421
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
  • 批准号:
    1522537
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了