Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis

合作研究:一种新的三维平行浸入边界方法在血液透析中的应用

基本信息

  • 批准号:
    1522537
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Fluid-structure interaction problems involving thin-walled structures are ubiquitous in biological and engineering applications. However, to date an efficient and effective technique, and a computational capability, for modeling and simulating the interactions between fluids and thin-walled structures are still sorely lacking. The investigators aim to design a new three-dimensional parallel immersed boundary method for computational simulation of fluid-thin-walled-structure interactions in a generic setting and apply it to blood flow past patient-specific distal anastomosis of arteriovenous grafts (AVG), which are essential to blood access of hemodialysis for numerous patients with end-stage renal disease. The new method, which will significantly broaden the applicability of immersed boundary methods, will be particularly valuable to the mathematical biology community for computational studies of vascular diseases such as vascular intimal hyperplasia, aneurysm, and atherosclerosis. Compared to existing models, the proposed computational model is more physiologically realistic: the simulation accommodates deformation of the vein/graft with the pulsatile blood flow, and it incorporates the small yet finite thickness of the vein/graft walls into the model. New computational results will clarify existing contradictory results in the literature regarding the force/flow characteristics near the distal AVG anastomosis and thus lead to a greater understanding of AVG-associated vascular intimal hyperplasia. The new method under development in this project will be generic and applicable to numerous significant problems in engineering, including parachute opening and novel design for street/highway signs. The studies will also enhance the understanding of vascular intimal hyperplasia due to dialysis, which may inspire the creation and development of novel vascular devices to prolong the patency rate of AVGs. This will not only improve quality of life for patients, but also offer savings in dialysis-related healthcare costs. The associated research and education activities will provide multidisciplinary training and research opportunities in mathematics, biology, scientific computing, fluid/solid mechanics, blood flows, and vascular disease for graduate students and undergraduates. The open source implementation of the new method will enable the fluid-structure-interaction community to dramatically increase their research productivity. The investigators will develop numerical methods to improve computational capability for fluid-thin-walled-structure interaction in three dimensions. They approach this type of problem by integrating several components: a structural component based on the high-order spectral/hp element technique, a fluid component based on the lattice Boltzmann method, and the coupling of the fluid and structure through the framework of the immersed boundary method. The goal of this project is three-fold: 1) Develop a three-dimensional IB-based method for fluid and thin-walled structure interactions in a general setting. The method will account for Newtonian and non-Newtonian fluids, material nonlinearity, and geometric nonlinearity. 2)Design, develop, and implement novel parallel algorithms for the new 3D method on hybrid CPU-GPU linux clusters. 3) Apply the new parallel method to model and simulate blood flow past the distal anastomosis of arteriovenous graft for hemodialysis using patient-specific data. The investigators' outreach activities will inspire high school students to consider careers in mathematical and computational sciences and raise public awareness for the dire consequences of end-stage renal disease, its associated healthcare costs, and the important roles mathematics and scientific computing play in studying disease and promoting health.
涉及薄壁结构的流固相互作用问题在生物和工程应用中普遍存在。然而,迄今为止,对流体和薄壁结构之间的相互作用进行建模和模拟的高效和有效的技术和计算能力仍然非常缺乏。研究人员旨在设计一种新的三维平行浸入边界方法,用于一般情况下流体-薄壁结构相互作用的计算模拟,并将其应用于通过患者特异性动静脉移植物远端吻合(AVG)的血流,这对于许多终末期肾病患者血液透析的血液通路至关重要。这种新方法将大大拓宽浸入边界方法的适用性,对数学生物学界对血管疾病(如血管内膜增生、动脉瘤和动脉粥样硬化)的计算研究尤其有价值。与现有模型相比,本文提出的计算模型在生理上更真实:模拟了静脉/移植物随脉动血流的变形,并将静脉/移植物壁的小而有限的厚度纳入模型。新的计算结果将澄清文献中关于AVG远端吻合口附近的力/流量特征的现有矛盾结果,从而更好地理解AVG相关的血管内膜增生。在这个项目中开发的新方法将是通用的,适用于许多重要的工程问题,包括降落伞打开和街道/公路标志的新设计。该研究还将加深对透析所致血管内膜增生的认识,从而启发新型血管装置的创造和发展,以延长AVGs的通畅率。这不仅可以提高患者的生活质量,还可以节省与透析相关的医疗费用。相关的研究和教育活动将为研究生和本科生提供数学、生物学、科学计算、流体/固体力学、血流和血管疾病等多学科的培训和研究机会。新方法的开源实现将使流固相互作用社区能够显著提高他们的研究效率。研究人员将开发数值方法来提高三维流体-薄壁结构相互作用的计算能力。他们通过整合几个组件来解决这类问题:基于高阶谱/高压单元技术的结构组件,基于晶格玻尔兹曼方法的流体组件,以及通过浸入边界方法框架的流体和结构耦合。该项目的目标有三个方面:1)开发一种基于三维流体和薄壁结构相互作用的方法。该方法将考虑牛顿流体和非牛顿流体、材料非线性和几何非线性。2)在CPU-GPU混合linux集群上设计、开发和实现新的3D方法并行算法。3)应用新的并行方法,利用患者特异性数据对血液透析动静脉移植物远端吻合口血流进行建模和模拟。研究人员的外展活动将激励高中生考虑从事数学和计算科学的职业,并提高公众对终末期肾病的可怕后果、相关医疗成本以及数学和科学计算在研究疾病和促进健康方面发挥的重要作用的认识。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On computing the hyperparameter of extreme learning machines: Algorithm and application to computational PDEs, and comparison with classical and high-order finite elements
关于计算极限学习机的超参数:计算偏微分方程的算法和应用,以及与经典和高阶有限元的比较
  • DOI:
    10.1016/j.jcp.2022.111290
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Dong, Suchuan;Yang, Jielin
  • 通讯作者:
    Yang, Jielin
Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations
A Modified Batch Intrinsic Plasticity Method for Pre-training the Random Coefficients of Extreme Learning Machines
  • DOI:
    10.1016/j.jcp.2021.110585
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dong;Zongwei Li
  • 通讯作者:
    S. Dong;Zongwei Li
An unconditionally energy-stable scheme for the convective heat transfer equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suchuan Dong其他文献

Simulating and visualizing the human arterial system on the TeraGrid
  • DOI:
    10.1016/j.future.2006.03.019
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis
  • 通讯作者:
    George Karniadakis
Physics-informed neural networks for approximating dynamic (hyperbolic) PDEs of second order in time: Error analysis and algorithms
用于近似二阶动态(双曲)偏微分方程的物理神经网络:误差分析和算法
  • DOI:
    10.1016/j.jcp.2023.112527
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxia Qian;Yongchao Zhang;Yunqing Huang;Suchuan Dong
  • 通讯作者:
    Suchuan Dong
Numerical approximation of partial differential equations by a variable projection method with artificial neural networks
用带人工神经网络的变分投影法对偏微分方程的数值逼近
A Functionally Connected Element Method for Solving Boundary Value Problems
求解边值问题的函数连通元法
  • DOI:
    10.48550/arxiv.2403.06393
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jielin Yang;Suchuan Dong
  • 通讯作者:
    Suchuan Dong
Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps
植入金的等离子体石英板作为激光驱动光声微流体泵的发射台
  • DOI:
    10.1073/pnas.1818911116
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiuhui Zhang;Shuai Yue;Feng Lin;Njumbe Epie;Suchuan Dong;Xiaonan Shan;Dong Liu;Wei-Kan Chu;Zhiming Wang;Jiming Bao
  • 通讯作者:
    Jiming Bao

Suchuan Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suchuan Dong', 18)}}的其他基金

Numerical Algorithms and Simulations for Multiphase Flows of Multiple Immiscible Incompressible Fluids
多种不混溶不可压缩流体多相流的数值算法与模拟
  • 批准号:
    2012415
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Joint Diagonalization-Based Spectral Element Approach
基于联合对角化的谱元方法
  • 批准号:
    1318820
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
An Efficient High-Order Method for Fluid-Structure Interactions
一种高效的流固耦合高阶方法
  • 批准号:
    0810929
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
CI-TEAM Implementation Project: Collaborative Research - Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究 - 培训模拟科学家掌握先进的网络基础设施工具和概念
  • 批准号:
    0636252
  • 财政年份:
    2006
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了