Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications

用于分类应用的脑 MRI 数据的非线性降维

基本信息

  • 批准号:
    402202-2012
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Classification, or the categorization of images into meaningful groups, is an important application in brain image analysis. Dimensionality reduction is a key component of many classification algorithms and is essential for reducing the complexity of mathematical methods for working with brain images. A simple example of dimensionality reduction in everyday use is the projection of 3D geography onto 2D maps. Different projection methods preserve different properties of the geography, just like different dimensionality reduction methods preserve different properties of brain images. Recently, groundbreaking discoveries in the field of machine learning have rekindled a strong interest in a type of neural network called the deep belief net (DBN), which has been shown to be very effective at automatically learning patterns of similarity in large groups of small images by reducing the dimensionality of the images to form a simplified virtual landscape in which similar images occupy the same valleys and dissimilar images are separated by hills. This approach has been shown to be more accurate for identifying faces and handwritten digits than practically all other methods. In comparison to the previous data used for DBN experiments, brain images are of much higher dimension and have much more complex shape and intensity variations. Our long-term research goal is to develop new DBN methods that can be used to form simplified landscapes of groups of brain images such that the valleys represent meaningful similarities that can be used for classification. Using a very large database of magnetic resonance images (MRIs) of patients with multiple sclerosis, we will develop new methods for making DBNs work with large, complex images. We will investigate what types of similarities DBNs are capable of extracting from groups of brain images, and determine whether those similarities are potentially useful for classifying brain images into various types of categories that will range from the visually obvious to ones that are not image-derived, such as clinical outcomes. If successful, this work will greatly benefit researchers in neuroimaging by allowing them to make much more effective use of their data.
分类,或者将图像分类为有意义的组,是大脑图像分析中的一个重要应用。降维是许多分类算法的关键组成部分,对于降低处理大脑图像的数学方法的复杂性至关重要。日常使用中降维的一个简单例子是将 3D 地理投影到 2D 地图上。不同的投影方法保留了地理的不同属性,就像不同的降维方法保留了大脑图像的不同属性一样。最近,机器学习领域的突破性发现重新点燃了人们对一种称为深度信念网络(DBN)的神经网络的浓厚兴趣,该网络已被证明能够非常有效地自动学习大组小图像中的相似模式,通过降低图像的维数来形成简化的虚拟景观,其中相似的图像占据相同的山谷,不同的图像被山丘隔开。事实证明,这种方法在识别人脸和手写数字方面比几乎所有其他方法更准确。与之前用于 DBN 实验的数据相比,大脑图像的维度要高得多,并且形状和强度变化要复杂得多。我们的长期研究目标是开发新的 DBN 方法,可用于形成大脑图像组的简化景观,使山谷代表可用于分类的有意义的相似性。利用多发性硬化症患者的磁共振图像 (MRI) 的大型数据库,我们将开发新方法,使 DBN 能够处理大型、复杂的图像。我们将研究 DBN 能够从大脑图像组中提取哪些类型的相似性,并确定这些相似性是否可能有助于将大脑图像分类为各种类型的类别,从视觉上明显的类别到非图像衍生的类别,例如临床结果。如果成功,这项工作将使神经影像研究人员能够更有效地利用他们的数据,从而极大地受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tam, Roger其他文献

Efficient Training of Convolutional Deep Belief Networks in the Frequency Domain for Application to High-Resolution 2D and 3D Images
  • DOI:
    10.1162/neco_a_00682
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Brosch, Tom;Tam, Roger
  • 通讯作者:
    Tam, Roger
Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
  • DOI:
    10.1109/tmi.2016.2528821
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Brosch, Tom;Tang, Lisa Y. W.;Tam, Roger
  • 通讯作者:
    Tam, Roger
Employment status, productivity loss, and associated factors among people with multiple sclerosis.
  • DOI:
    10.1177/13524585231164295
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Llorian, Elisabet Rodriguez;Zhang, Wei;Khakban, Amir;Michaux, Kristina;Patten, Scott;Traboulsee, Anthony;Oh, Jiwon;Kolind, Shannon;Prat, Alexandre;Tam, Roger;Lynd, Larry D.
  • 通讯作者:
    Lynd, Larry D.
A 24-month advanced magnetic resonance imaging study of multiple sclerosis patients treated with alemtuzumab
  • DOI:
    10.1177/1352458518770085
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Vavasour, Irene M.;Tam, Roger;Traboulsee, Anthony
  • 通讯作者:
    Traboulsee, Anthony
Resistance Training Maintains White Matter and Physical Function in Older Women with Cerebral Small Vessel Disease: An Exploratory Analysis of a Randomized Controlled Trial.
  • DOI:
    10.3233/adr-220113
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Oh, Jean;Crockett, Rachel A;Hsu, Chun-Liang;Dao, Elizabeth;Tam, Roger;Liu-Ambrose, Teresa
  • 通讯作者:
    Liu-Ambrose, Teresa

Tam, Roger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tam, Roger', 18)}}的其他基金

Integration of Heterogeneous Data in Artificial Neural Networks for Image Classification
人工神经网络中异构数据的集成用于图像分类
  • 批准号:
    RGPIN-2018-04651
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of Heterogeneous Data in Artificial Neural Networks for Image Classification
人工神经网络中异构数据的集成用于图像分类
  • 批准号:
    RGPIN-2018-04651
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of Heterogeneous Data in Artificial Neural Networks for Image Classification
人工神经网络中异构数据的集成用于图像分类
  • 批准号:
    RGPIN-2018-04651
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of Heterogeneous Data in Artificial Neural Networks for Image Classification
人工神经网络中异构数据的集成用于图像分类
  • 批准号:
    RGPIN-2018-04651
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of Heterogeneous Data in Artificial Neural Networks for Image Classification
人工神经网络中异构数据的集成用于图像分类
  • 批准号:
    RGPIN-2018-04651
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Prototyping medical imaging workflow management software with MRI-specific tool chains
使用 MRI 专用工具链构建医学成像工作流程管理软件原型
  • 批准号:
    452397-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1841805
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1664426
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
A probabilistic framework for nonlinear dimensionality reduction algorithms
非线性降维算法的概率框架
  • 批准号:
    DP130100364
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
  • 批准号:
    402202-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
  • 批准号:
    334607-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
  • 批准号:
    334607-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
  • 批准号:
    334607-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了