Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
基本信息
- 批准号:1664426
- 负责人:
- 金额:$ 38.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Andrew Ferguson of the University of Illinois at Urbana-Champaign is supported by an award from the Chemical Theory, Models and Computational Methods Program in the Chemistry Division to establish new theoretical approaches and computational tools to accelerate molecular simulations of protein folding. This project is cofunded by the Condensed Matter and Materials Theory Program in the Division of Materials Research. Proteins are molecular workhorses that perform the essential functions of life. Proteins have evolved to adopt shapes that enable them to do these tasks. Determining the shape and motions of a protein can help reveal how it works and inform how to design new proteins to help treat disease, produce biofuels, or make new materials. Computer simulations of proteins are very useful in that they can identify the precise locations and motions of all the constituent atoms. For all but the smallest proteins, however, it is too computationally intensive to accurately predict their structure and motions even with powerful supercomputers. Ways to accelerate these simulations have been developed, but to work well they need good estimates of the structural rearrangements that the protein will make. This is a problem, since this is usually the question the simulations are trying to answer. In this work, Professor Ferguson is developing a new approach to accelerate protein folding simulations using a type of machine learning known as artificial neural networks so-called because they are based on the structure of neurons in the brain. Neural networks allow computers to both determine these important structural pathways and use them to make simulations run faster. This new approach is being used to help understand large proteins involved in cancer and HIV infection. It is also being incorporated into popular simulation software available for free public download. Professor Ferguson is providing research opportunities for undergraduates to work with him on this project and he is developing hands-on workshops in computational materials science as part of the Girls Learning About Materials (GLAM) summer camp at the University of Illinois. The aim of this work is to establish a nonlinear machine learning approach to discover collective variables for protein folding and to use these variables to perform enhanced sampling in molecular dynamics simulations. The success of enhanced sampling techniques in accelerating conformational sampling is predicated on the availability of good collective variables (CVs) correlated with important molecular motions. Existing nonlinear dimensionality reduction techniques (e.g., diffusion maps, Isomap, land ocally linear embedding) can ably discover good CVs, but do not furnish the explicit coordinate mapping so that biased sampling must be conducted inefficiently and indirectly in proxy variables. This work establishes a new enhanced sampling approach based on auto-associative artificial neural networks ("autoencoders") to discover CVs that are explicit differentiable functions of the atomic coordinates and to permit calculation of analytical biasing forces. This approach is termed MESA (Molecular Enhanced Sampling with Autoencoders). MESA is validated on the short peptides alanine dipeptide and tryptophan-cage, and deployed to discover metastable states and structural transitions in a kinase overexpressed in many cancers and an envelope protein presented on the surface of HIV. MESA is made broadly available to the molecular simulation community by collaborating with the developers of OpenMM and PLUMED to contribute the approach to future releases of these software packages. Positive research experiences have great benefits for undergraduate success and retention and this work supports 10-week summer research opportunities during each year of the award. Professor Ferguson is also developing new and exciting content for the highly successful Girls Learning About Materials (GLAM) summer camp at the University of Illinois to illustrate and promote computational materials science among female high school students and elevate female enrollment in STEM degree programs.
伊利诺伊大学厄巴纳-香槟分校的安德鲁·弗格森(Andrew Ferguson)获得了化学学部化学理论、模型和计算方法项目的奖励,以建立新的理论方法和计算工具来加速蛋白质折叠的分子模拟。本项目由材料研究部凝聚态物质与材料理论项目共同资助。蛋白质是执行生命基本功能的分子主力。蛋白质已经进化出能够完成这些任务的形状。确定蛋白质的形状和运动有助于揭示它的工作原理,并告知如何设计新的蛋白质来帮助治疗疾病、生产生物燃料或制造新材料。计算机模拟蛋白质是非常有用的,因为它们可以确定所有组成原子的精确位置和运动。然而,对于除了最小的蛋白质之外的所有蛋白质,即使使用强大的超级计算机也无法准确预测它们的结构和运动,计算量太大。加速这些模拟的方法已经被开发出来,但要想很好地工作,他们需要对蛋白质将进行的结构重排进行良好的估计。这是一个问题,因为这通常是模拟试图回答的问题。在这项工作中,弗格森教授正在开发一种新的方法来加速蛋白质折叠模拟,使用一种被称为人工神经网络的机器学习方法,因为它们是基于大脑神经元的结构。神经网络允许计算机确定这些重要的结构路径,并利用它们使模拟运行得更快。这种新方法被用来帮助理解与癌症和HIV感染有关的大蛋白。它还被纳入流行的模拟软件中,可供公众免费下载。弗格森教授正在为本科生提供研究机会,与他一起研究这个项目,他正在开发计算材料科学的动手讲习班,作为伊利诺伊大学女孩学习材料(GLAM)夏令营的一部分。这项工作的目的是建立一种非线性机器学习方法来发现蛋白质折叠的集体变量,并使用这些变量在分子动力学模拟中进行增强采样。增强采样技术在加速构象采样方面的成功是基于与重要分子运动相关的良好集体变量(CVs)的可用性。现有的非线性降维技术(如扩散图、Isomap、陆地局部线性嵌入)可以发现良好的cv,但没有提供明确的坐标映射,因此必须在代理变量中进行低效和间接的有偏采样。这项工作建立了一种基于自关联人工神经网络(“自动编码器”)的新的增强采样方法,以发现原子坐标的显式微函数cv,并允许计算分析偏置力。这种方法被称为MESA(分子增强采样与自动编码器)。MESA在短肽丙氨酸二肽和色氨酸笼上得到验证,并用于发现在许多癌症中过表达的激酶和HIV表面呈现的包膜蛋白的亚稳态和结构转变。通过与OpenMM和PLUMED的开发人员合作,MESA可以广泛地提供给分子模拟社区,为这些软件包的未来版本提供方法。积极的研究经历对本科生的成功和保留有很大的好处,这项工作在每年的奖励期间支持10周的暑期研究机会。弗格森教授还为伊利诺伊大学非常成功的女孩学习材料夏令营(GLAM)开发了新的令人兴奋的内容,以说明和促进女性高中学生的计算材料科学,并提高女性在STEM学位课程中的入学率。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design
- DOI:10.1063/1.5023804
- 发表时间:2018-08-21
- 期刊:
- 影响因子:4.4
- 作者:Chen, Wei;Tan, Aik Rui;Ferguson, Andrew L.
- 通讯作者:Ferguson, Andrew L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ferguson其他文献
Enough is Enough: Policy Uncertainty and Acquisition Abandonment
受够了:政策不确定性和收购放弃
- DOI:
10.2139/ssrn.3883981 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Andrew Ferguson;Wei;P. Lam - 通讯作者:
P. Lam
‘Know when to fold 'em’: Policy uncertainty and acquisition abandonment
“知道何时放弃”:政策不确定性和收购放弃
- DOI:
10.1111/acfi.13179 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Ferguson;Cecilia Wei Hu;P. Lam - 通讯作者:
P. Lam
Nutrition and Isolation in a Rural US Population over 80 Years Old: A Descriptive Analysis of a Vulnerable Population
美国农村 80 岁以上人口的营养和隔离:弱势群体的描述性分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Courtney D Wellman;Andrew Ferguson;Thomas McIntosh;Alperen Korkmaz;Robert B Walker;Adam M. Franks - 通讯作者:
Adam M. Franks
Market reactions to Australian boutique resource investor presentations
市场对澳大利亚精品资源投资者演讲的反应
- DOI:
10.1016/j.resourpol.2011.07.004 - 发表时间:
2011 - 期刊:
- 影响因子:10.2
- 作者:
Andrew Ferguson;T. Scott - 通讯作者:
T. Scott
Share Purchase Plans in Australia: Issuer Characteristics and Valuation Implications
澳大利亚的股票购买计划:发行人特征和估值影响
- DOI:
10.1177/031289620803300205 - 发表时间:
2008 - 期刊:
- 影响因子:4.8
- 作者:
P. Brown;Andrew Ferguson;K. Stone - 通讯作者:
K. Stone
Andrew Ferguson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ferguson', 18)}}的其他基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323730 - 财政年份:2023
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
Latent Space Simulators for the Efficient Estimation of Long-time Molecular Thermodynamics and Kinetics
用于有效估计长时间分子热力学和动力学的潜在空间模拟器
- 批准号:
2152521 - 财政年份:2022
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
REU SITE: Research Experience for Undergraduates in Molecular Engineering
REU 网站:分子工程本科生的研究经验
- 批准号:
2050878 - 财政年份:2021
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis
EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现
- 批准号:
1939463 - 财政年份:2019
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Type II: Data-Driven Characterization and Engineering of Protein Hydrophobicity
EAGER:合作研究:II 类:数据驱动的蛋白质疏水性表征和工程
- 批准号:
1844505 - 财政年份:2019
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
- 批准号:
1841805 - 财政年份:2018
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
CAREER: Teaching Machines to Design Self-Assembling Materials
职业:教授机器设计自组装材料
- 批准号:
1841800 - 财政年份:2018
- 资助金额:
$ 38.01万 - 项目类别:
Continuing Grant
Nonlinear Manifold Learning of Protein Folding Funnels from Delay-Embedded Experimental Measurements
来自延迟嵌入实验测量的蛋白质折叠漏斗的非线性流形学习
- 批准号:
1841810 - 财政年份:2018
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
- 批准号:
1841807 - 财政年份:2018
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
- 批准号:
1729011 - 财政年份:2017
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
相似国自然基金
高维稀疏数据聚类研究
- 批准号:70771007
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
- 批准号:
1841805 - 财政年份:2018
- 资助金额:
$ 38.01万 - 项目类别:
Standard Grant
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
- 批准号:
402202-2012 - 财政年份:2017
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
- 批准号:
402202-2012 - 财政年份:2015
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
- 批准号:
402202-2012 - 财政年份:2014
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
A probabilistic framework for nonlinear dimensionality reduction algorithms
非线性降维算法的概率框架
- 批准号:
DP130100364 - 财政年份:2013
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Projects
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
- 批准号:
402202-2012 - 财政年份:2013
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Dimensionality Reduction of Brain MRI Data for Classification Applications
用于分类应用的脑 MRI 数据的非线性降维
- 批准号:
402202-2012 - 财政年份:2012
- 资助金额:
$ 38.01万 - 项目类别:
Discovery Grants Program - Individual
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2008
- 资助金额:
$ 38.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2007
- 资助金额:
$ 38.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unsupervised learning algorithms for neural networks and nonlinear dimensionality reduction
神经网络和非线性降维的无监督学习算法
- 批准号:
334607-2006 - 财政年份:2006
- 资助金额:
$ 38.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral