Algebras that are nearly associative
近结合代数
基本信息
- 批准号:153128-2011
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of algebraic structures originated in the middle of the 1800's. The field of real numbers had already been extended to include the square root of -1, and this produced the field of complex numbers. Both of these systems satisfy commutativity, ab = ba, and associativity, (ab)c = a(bc). The complex numbers (2-dimensional over the real numbers) were then extended to the quaternions (4-dimensional) which are not commutative. The quaternions were then extended to the octonions (8-dimensional) which are not associative. Properties such as commutativity and associativity are known as polynomial identities for algebras.
代数结构理论起源于19世纪中期。实数领域已经扩展到包括-1的平方根,这就产生了复数领域。这两个系统都满足交换性ab = ba和结合性ab)c = a(bc)。然后将复数(实数上的二维)扩展到不可交换的四元数(四维)。然后将四元数扩展到不结合的八元数(8维)。交换性和结合性等性质被称为代数的多项式恒等式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bremner, Murray其他文献
Bremner, Murray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bremner, Murray', 18)}}的其他基金
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebras that are nearly associative
近结合代数
- 批准号:
153128-2011 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebras that are nearly associative
近结合代数
- 批准号:
153128-2011 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebras that are nearly associative
近结合代数
- 批准号:
153128-2011 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Algebras that are nearly associative
近结合代数
- 批准号:
153128-2011 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Computational methods in nonassociative algebra
非结合代数的计算方法
- 批准号:
153128-2006 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Occupational exposure to ionizing radiation and the impacts on cancer incidence, and mortality: a record linkage cohort study of nearly one million workers in the Canadian National Dose Registry
电离辐射的职业暴露及其对癌症发病率和死亡率的影响:一项针对加拿大国家剂量登记处近百万工人的创纪录的连锁队列研究
- 批准号:
480070 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Operating Grants
Heuristics and Biases are (Nearly) Optimal: A Fresh Programmatic Study of Heuristics and Biases in Human Decision-Making
启发式和偏见(几乎)最优:人类决策中启发式和偏见的一项新的程序研究
- 批准号:
RGPIN-2021-03434 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hydrocarbon Analysis of Contaminated Beach Sediments in Cape Hatt, NU, Nearly Forty Years After Application
应用近四十年后,NU 哈特角受污染海滩沉积物的碳氢化合物分析
- 批准号:
575886-2022 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
- 批准号:
22H01146 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Heuristics and Biases are (Nearly) Optimal: A Fresh Programmatic Study of Heuristics and Biases in Human Decision-Making
启发式和偏见(几乎)最优:人类决策中启发式和偏见的一项新的程序研究
- 批准号:
RGPIN-2021-03434 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Magnon-phonon hybridization in nearly compensated magnets for thermoelecric conversion and heat control
近补偿磁体中的磁子-声子杂化用于热电转换和热控制
- 批准号:
20K05297 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impurities and disorder in nearly integrable models
近可积模型中的杂质和无序
- 批准号:
421428100 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Research Units
Studies on general and nearly exact statistical methods for monotone missing data under nonnormality and their applications
非正态下单调缺失数据的通用准精确统计方法及其应用研究
- 批准号:
19K14595 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: T1-iSDA - Bringing NAAT-like sensitivity to (nearly) instrument-free measurement of protein concentration
EAGER:T1-iSDA - 为(几乎)无需仪器的蛋白质浓度测量带来类似 NAAT 的灵敏度
- 批准号:
1842440 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Preparations of nearly monodispersed nanoparticles and their ordered deposition film
近单分散纳米颗粒的制备及其有序沉积薄膜
- 批准号:
18K04817 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)