Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
基本信息
- 批准号:198281-2011
- 负责人:
- 金额:$ 0.73万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Networks are useful models for transportation, communication and computer networks. In this proposal we are interested in the problem of connecting a set S of nodes in a network by some optimal subnetwork. This could be (i) a shortest connected subnetwork containing S ,i.e., with the smallest number of nodes or (ii) a connected subnetwork containing S that is minimal in the sense that if any node not in S is deleted from the subnetwork, then this disconnects S. The interval for S with respect to either of these two optimal ways of connecting S consist of all nodes that belong to some shortest subnetwork connecting S (or some minimal subnetwork containing S). A set T of nodes is convex or closed if it contains the interval for every subset S of T having a fixed size. We propose to study structures of networks for which these closed sets have certain properties.
网络是运输、通信和计算机网络的有用模型。在这个建议中,我们感兴趣的问题,连接一组S的节点在网络中的一些最佳子网。这可以是(i)包含S的最短连通子网络,即,具有最小数目的节点或(ii)包含S的连通子网络,其在以下意义上是最小的:如果从子网络中删除不在S中的任何节点,则这断开S。 关于这两种连接S的最优方式中的任一种的S的区间由属于连接S的某个最短子网(或包含S的某个最小子网)的所有节点组成。一个节点集T是凸的或闭的,如果它包含T的每个子集S的区间,具有固定的大小。 我们建议研究这些闭集具有某些性质的网络结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oellermann, Ortrud其他文献
Oellermann, Ortrud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oellermann, Ortrud', 18)}}的其他基金
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2020
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2019
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2018
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2017
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2016
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2015
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2013
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2012
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2011
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Graphs and association schemes: higher-dimensional invariants and their applications
图和关联方案:高维不变量及其应用
- 批准号:
22K03403 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2015
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2013
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2012
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2011
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Study of invariants and geometric structures by local moves in Knot Theory
通过结理论中的局部移动研究不变量和几何结构
- 批准号:
22540099 - 财政年份:2010
- 资助金额:
$ 0.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Graph convexity, distance invariants and average connectivity
图凸性、距离不变量和平均连通性
- 批准号:
198281-2005 - 财政年份:2010
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Graph convexity, distance invariants and average connectivity
图凸性、距离不变量和平均连通性
- 批准号:
198281-2005 - 财政年份:2008
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual
Study of local moves and invariants for knots and virtual knots
结和虚拟结的局部移动和不变量的研究
- 批准号:
19540102 - 财政年份:2007
- 资助金额:
$ 0.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Graph convexity, distance invariants and average connectivity
图凸性、距离不变量和平均连通性
- 批准号:
198281-2005 - 财政年份:2006
- 资助金额:
$ 0.73万 - 项目类别:
Discovery Grants Program - Individual