Financial modelling and derivatives pricing under alternative Stochastic processes

替代随机过程下的金融建模和衍生品定价

基本信息

  • 批准号:
    262275-2008
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The development of realistic stochastic models for risky asset price processes and their implementation to the pricing of generally exotic derivatives is at the heart of modern day financial mathematics. A vast body of research is devoted to this important area which poses computational and theoretical challenges. Current models go well beyond the celebrated Black-Scholes model which does not support commonly observed features such as volatility clustering and fat tail distributions for asset price returns. The observed leverage effect and the market implied volatility smiles are also completely absent in this model and not well replicated in some mathematical extensions of the model. The resolution of these model discrepancies is a fundamental issue and this continues to fuel interest in financial modelling and option pricing with the use of more realistic models. The goal of my research is to make further progress in this and related critical areas of financial mathematics. This proposal focuses on further innovative developments of alternative stochastic processes in the single and multi-asset domain with several applications to derivatives pricing. An underlying component of my research involves the use of our newly developed families of analytically tractable models. Our research to date has shown that our models are rich in their ability to realistically describe option market volatility smiles and skews. My most current work also develops analytically exact spectral expansions for first passage time densities, barrier options and seasoned lookback options for these new models. We have also recently succeeded in developing efficient algorithms for pricing exotic options under subfamilies of our new volatility smile models. This proposal will continue to build on new developments and applications of such alternative stochastic models. The development of efficient numerical algorithms for describing such processes leads to various applications in finance as well as in many other areas of mathematical modelling that involve stochastic processes. The mathematical and computational results that will be generated by this research are expected to significantly impact the field of financial mathematics.
危险资产价格过程的现实随机模型的开发及其对普遍异国情调衍生品的定价的实施是现代金融数学的核心。大量研究专门针对这一重要领域,构成了计算和理论挑战。当前的模型远远超出了著名的黑色 - 智能模型,该模型不支持通常观察到的功能,例如波动性聚类和资产价格回报的脂肪尾部分布。在该模型的某些数学扩展中,观察到的杠杆作用和市场隐含的波动性微笑也完全不存在。这些模型差异的解决是一个基本问题,这继续引起人们对财务建模和期权定价的兴趣,并使用更现实的模型。我的研究的目的是在金融数学的这一关键领域取得进一步的进步。该提案着重于单个和多资产域中替代随机过程的进一步创新发展,并具有多种用于衍生品定价的应用。我的研究的基本组成部分涉及使用新开发的分析模型家族。迄今为止,我们的研究表明,我们的模型具有现实描述期权市场波动性微笑和偏斜的能力。我目前的最新工作还为这些新型号的第一通道时间密度,障碍选项和经验丰富的回溯选项开发了分析上精确的光谱扩展。最近,我们还成功地开发了有效的算法,用于在我们新的波动性微笑模型的亚家族下定价异国选择。该建议将继续基于此类替代随机模型的新开发和应用。描述此类过程的有效数值算法的开发导致金融中的各种应用以及许多涉及随机过程的数学建模领域。这项研究将产生的数学和计算结果预计将显着影响金融数学领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Campolieti, Giuseppe其他文献

Campolieti, Giuseppe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Campolieti, Giuseppe', 18)}}的其他基金

Solvable and Other Stochastic Models for Risk Modeling and Asset Pricing in Quantitative Finance
定量金融中风险建模和资产定价的可解模型和其他随机模型
  • 批准号:
    RGPIN-2018-06176
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Solvable and Other Stochastic Models for Risk Modeling and Asset Pricing in Quantitative Finance
定量金融中风险建模和资产定价的可解模型和其他随机模型
  • 批准号:
    RGPIN-2018-06176
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Solvable and Other Stochastic Models for Risk Modeling and Asset Pricing in Quantitative Finance
定量金融中风险建模和资产定价的可解模型和其他随机模型
  • 批准号:
    RGPIN-2018-06176
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Solvable and Other Stochastic Models for Risk Modeling and Asset Pricing in Quantitative Finance
定量金融中风险建模和资产定价的可解模型和其他随机模型
  • 批准号:
    RGPIN-2018-06176
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Solvable and Other Stochastic Models for Risk Modeling and Asset Pricing in Quantitative Finance
定量金融中风险建模和资产定价的可解模型和其他随机模型
  • 批准号:
    RGPIN-2018-06176
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Financial modelling and derivatives pricing under alternative Stochastic processes
替代随机过程下的金融建模和衍生品定价
  • 批准号:
    262275-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Financial modelling and derivatives pricing under alternative Stochastic processes
替代随机过程下的金融建模和衍生品定价
  • 批准号:
    262275-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Financial modelling and derivatives pricing under alternative Stochastic processes
替代随机过程下的金融建模和衍生品定价
  • 批准号:
    262275-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Financial modelling and derivatives pricing under alternative Stochastic processes
替代随机过程下的金融建模和衍生品定价
  • 批准号:
    262275-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Applied mathematical and computational techniques for option pricing and risk management
期权定价和风险管理的应用数学和计算技术
  • 批准号:
    262275-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

热液改造型页岩成储机理研究——以松辽盆地青一段为例
  • 批准号:
    42372150
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
  • 批准号:
    52205201
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of an action mechanism of BNTX derivatives toward antitrichomonal activity and the structure activity relationship
BNTX衍生物抗毛滴虫活性作用机制及其构效关系的阐明
  • 批准号:
    17K13259
  • 财政年份:
    2017
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Asymptotic expansion for the discretely observed interest rate models and its applications to interest rate derivatives pricing
离散观测利率模型的渐近展开及其在利率衍生品定价中的应用
  • 批准号:
    26380401
  • 财政年份:
    2014
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The development of radiolabelled GHSR-1a small molecule ligands for the accurate diagnosis of prostate cancer using PET
开发放射性标记的 GHSR-1a 小分子配体,用于使用 PET 准确诊断前列腺癌
  • 批准号:
    318941
  • 财政年份:
    2014
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Fellowship Programs
Construction and STM Investigation of 2D self-assembled structures of ionized heptazine derivatives
离子化七嗪衍生物二维自组装结构的构建和STM研究
  • 批准号:
    23681016
  • 财政年份:
    2011
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Financial modelling and derivatives pricing under alternative Stochastic processes
替代随机过程下的金融建模和衍生品定价
  • 批准号:
    262275-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了