Application of nonlocal continuum mechanics in modeling of carbon nanotubes and graphenes

非局域连续介质力学在碳纳米管和石墨烯建模中的应用

基本信息

  • 批准号:
    341060-2012
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Claimed to be "wonder material", graphene is a super-strong and transparent form of carbon with one atom thickness which can be used in solar panels and lightweight composites. A carbon nanotube is a cylinder made of graphene. Carbon nanotubes (CNTs) and graphenes have been discovered to hold great potential for countless technology innovations and applications, such as extremely lightweight and strong fabrics, chemical sensors, electrical sensors, fuel cells, and drug delivery. Unfortunately, their prompt and wide applications are hindered by insufficient understanding of their mechanical behaviour due to limitations of two major traditional approaches for graphene and CNTs modelling: atomistic modelling such as classical molecular dynamics which is usually limited to small scale calculations and local continuum mechanics which have limited applicability due to the fact that at small size the lattice spacing between individual atoms becomes increasingly important and the theory cannot account for the scale effect.
石墨烯被称为“神奇材料”,是一种超级强大和透明的碳形式,具有一个原子厚度,可用于太阳能电池板和轻质复合材料。碳纳米管是由石墨烯制成的圆柱体。碳纳米管(CNT)和石墨烯已被发现在无数技术创新和应用中具有巨大潜力,例如极轻且坚固的织物、化学传感器、电传感器、燃料电池和药物输送。不幸的是,由于石墨烯和CNT建模的两种主要传统方法的限制,对它们的机械行为的理解不足,阻碍了它们的迅速和广泛的应用:原子模型,例如通常限于小尺度计算的经典分子动力学和由于在小尺寸下单个原子之间的晶格间距变得这一理论不能解释规模效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Quan其他文献

Network Pharmacology and Molecular Docking Validation to Reveal the Pharmacological Mechanisms of Kangai Injection against Colorectal Cancer.
  • DOI:
    10.1155/2022/3008842
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng, Bo-Bo;Wang, Quan;Yue, Yumin;Li, Jiang;Li, Xiao-Jun;Wang, Xin
  • 通讯作者:
    Wang, Xin
The association between personal social capital and health-related quality of life among Chinese older people: A cross-sectional study.
  • DOI:
    10.3389/fnut.2022.995729
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jiang, Dongdong;Yan, Yajie;Zhou, Han;Wang, Quan
  • 通讯作者:
    Wang, Quan
Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap.
  • DOI:
    10.1021/ar200304t
  • 发表时间:
    2012-11-20
  • 期刊:
  • 影响因子:
    18.3
  • 作者:
    Wang, Quan;Goldsmith, Randall H.;Jiang, Yan;Bockenhauer, Samuel D.;Moerner, W. E.
  • 通讯作者:
    Moerner, W. E.
G-quadruplex preferentially forms at the very 3' end of vertebrate telomeric DNA.
G-四链体优先在脊椎动物端粒 DNA 的 3' 端形成。
  • DOI:
    10.1093/nar/gkm1137
  • 发表时间:
    2008-03
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Tang, Jun;Kan, Zhong-yuan;Yao, Yuan;Wang, Quan;Hao, Yu-hua;Tan, Zheng
  • 通讯作者:
    Tan, Zheng
Single Incision non-thoracoscopic Nuss procedure for children with pectus excavatum: protocol for a multicenter, non-masked, randomized controlled trial.
  • DOI:
    10.3389/fsurg.2023.1210452
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Wang, Quan;Pan, Zhengxia;Wu, Chun;Li, Yonggang;Wang, Gang;Dai, Jiangtao;Ren, Chunnian;Xie, Yiming;Xiong, Liangjun;Zhang, Libing;Li, Hongbo
  • 通讯作者:
    Li, Hongbo

Wang, Quan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Quan', 18)}}的其他基金

Application of nonlocal continuum mechanics in modeling of carbon nanotubes and graphenes
非局域连续介质力学在碳纳米管和石墨烯建模中的应用
  • 批准号:
    341060-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Application of nonlocal continuum mechanics in modeling of carbon nanotubes and graphenes
非局域连续介质力学在碳纳米管和石墨烯建模中的应用
  • 批准号:
    341060-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Solid Mechanics
加拿大固体力学研究主席
  • 批准号:
    1000220886-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Application of nonlocal continuum mechanics in modeling of carbon nanotubes and graphenes
非局域连续介质力学在碳纳米管和石墨烯建模中的应用
  • 批准号:
    341060-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Solid Mechanics
加拿大固体力学研究主席
  • 批准号:
    1000220886-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Application of nonlocal continuum mechanics in modeling of carbon nanotubes and graphenes
非局域连续介质力学在碳纳米管和石墨烯建模中的应用
  • 批准号:
    341060-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Solid Mechanics
加拿大固体力学研究主席
  • 批准号:
    1000220886-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Canada Research Chair in Solid Mechanics
加拿大固体力学研究主席
  • 批准号:
    1000220886-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Stability analysis of carbon nanotubes with continuum mechanics
碳纳米管的连续介质稳定性分析
  • 批准号:
    341060-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Stability analysis of carbon nanotubes with continuum mechanics
碳纳米管的连续介质稳定性分析
  • 批准号:
    341060-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Nonlocal的MRI脑肿瘤图像分割方法的研究
  • 批准号:
    11426205
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
结构信息约束的乳腺DCE-MRI药代动力学参数图和组织形变场的联合估计
  • 批准号:
    81101109
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Research Grant
Nonlocal Hydrodynamic Models of Interacting Agents
相互作用主体的非局域流体动力学模型
  • 批准号:
    EP/V000586/2
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Fellowship
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
  • 批准号:
    23K13013
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New perspectives on nonlocal equations
非局部方程的新视角
  • 批准号:
    FT230100333
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    ARC Future Fellowships
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
  • 批准号:
    22KK0226
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了