Convex Analysis, Monotone Operator Theory and Algorithms

凸分析、单调算子理论与算法

基本信息

  • 批准号:
    446219-2013
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有总结 - Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bauschke, Heinz其他文献

Bauschke, Heinz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bauschke, Heinz', 18)}}的其他基金

Douglas-Rachford splitting: static properties, asymptotic behaviour, variants, extensions and applications
Douglas-Rachford 分裂:静态属性、渐近行为、变体、扩展和应用
  • 批准号:
    RGPIN-2018-03703
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Douglas-Rachford splitting: static properties, asymptotic behaviour, variants, extensions and applications
Douglas-Rachford 分裂:静态属性、渐近行为、变体、扩展和应用
  • 批准号:
    RGPIN-2018-03703
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Douglas-Rachford splitting: static properties, asymptotic behaviour, variants, extensions and applications
Douglas-Rachford 分裂:静态属性、渐近行为、变体、扩展和应用
  • 批准号:
    RGPIN-2018-03703
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Douglas-Rachford splitting: static properties, asymptotic behaviour, variants, extensions and applications
Douglas-Rachford 分裂:静态属性、渐近行为、变体、扩展和应用
  • 批准号:
    RGPIN-2018-03703
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Douglas-Rachford splitting: static properties, asymptotic behaviour, variants, extensions and applications
Douglas-Rachford 分裂:静态属性、渐近行为、变体、扩展和应用
  • 批准号:
    RGPIN-2018-03703
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis and Optimization
凸分析与优化
  • 批准号:
    1000222784-2010
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Canada Research Chairs
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    446219-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis and Monotone Operators: Forward and Backward
凸分析和单调算子:前向和后向
  • 批准号:
    315554911
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Research Grants
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    446219-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    446219-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Convex Analysis, monotone operators and projection algorithms
凸分析、单调算子和投影算法
  • 批准号:
    216877-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Nonsmooth analysis on asplund generated spaces, computational convex analysis, and differentiability of cone-monotone functions
asplund 生成空间的非光滑分析、计算凸分析和锥单调函数的可微性
  • 批准号:
    250229-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了