Bioengineering tools for aortic pathologies: the role of in vivo mechanics

主动脉病理的生物工程工具:体内力学的作用

基本信息

  • 批准号:
    RGPIN-2014-04043
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The overall goal of this research program is the development of bio-mechanical assessment tools for living tissues in vivo. The proposed research will focus on the specific challenge of establishing prognostic classification of aortic aneurysms. The tools generated, however, will have wide applicability to dynamic modelling of soft tissues. Aortic aneurysms are characterized by a permanent and localized dilatation of the aorta and are generally asymptomatic. However, when they do become symptomatic, they often present in catastrophic fashion, with rupture or dissection, causing severe pain, massive internal hemorrhaging and/or death. Therefore, there is urgency to determine which aneurysms are benign and which are prone to life-threatening complications. This urgency is further heightened because treatment can have its own complications and is reserved for aneurysms at the highest risk of rupture. The Aortic Aneurysm Challenge: The research plan focuses on the identification of biomechanical-based indices that can help clarify the interplay between the local mechanical stresses and the degree of weakening of the wall of the pathologic aorta. After the initial insult (which may be a combination of genetic, behavioural and mechanical influences), the aortic wall tissue responds to sustained mechanical stresses modifying the balance of synthesis and degradation of its constituents. In the early stages, the balance is shifted towards higher collagen production. However, as the pathology progresses, the inflammatory process takes precedence; and, the growth/remodeling balance shifts towards progressive degeneration of the structural components, with the ultimate result of a locally weak wall prone to fast dilatation and rupture. We will investigate stress-mediated weakening using a custom-designed micro-biaxial device under a confocal microscope. Previous studies have shown significant changes in the material properties as well as in the collagen content and orientation in the wall of an aneurysm. In particular, the wall deformability appears to be related to its strength and a local increase in deformation could help identifying areas at elevated risk of rupture. However, such information cannot be derived non-invasively with current clinical imaging modalities. Building on our preliminary results with optical flow detection of wall deformation we will develop a software suite to obtain in vivo maps of deformation and local material properties. Once the local material properties are estimated, we will employ a multi-scale approach to fully characterize the in vivo mechanical state of the tissue. This is essential information to assess rupture potential. The novel approach proposed allows the estimation of indices that are individualized to patient-specific data (inter-patient variability), while also considering the well-known regional heterogeneity within the thoracic segments (intra-patient variability). The technique will be applied to identify engineering-based indices of accelerated growth and dissection for aortic aneurysms and to provide early reliable indications for intervention. The end result will be an engineering software tool that provides an estimate of stress-mediated degeneration of soft tissues through in-vivo mechanics assessment. The technology can be applied to other soft tissues, including the wall of left atrium to identify recurrence of atrial fibrillation, as well as to cartilage and tendons.
该研究计划的总体目标是开发活体组织的生物力学评估工具。拟议的研究将集中在建立主动脉瘤预后分类的具体挑战。然而,所产生的工具将具有广泛的适用性,软组织的动态建模。主动脉瘤的特征在于主动脉的永久性和局部扩张,并且通常无症状。然而,当它们确实出现症状时,它们通常以灾难性的方式出现,破裂或夹层,引起剧烈疼痛,大规模内部创伤和/或死亡。因此,迫切需要确定哪些动脉瘤是良性的,哪些动脉瘤容易发生危及生命的并发症。这种紧迫性进一步提高,因为治疗可能有自己的并发症,并保留在破裂风险最高的动脉瘤。主动脉瘤挑战:该研究计划的重点是确定基于生物力学的指标,这些指标可以帮助澄清局部机械应力与病理主动脉壁弱化程度之间的相互作用。在初始损伤(其可能是遗传、行为和机械影响的组合)之后,主动脉壁组织响应于持续的机械应力,从而改变其成分的合成和降解的平衡。在早期阶段,平衡转向更高的胶原蛋白生产。然而,随着病理学进展,炎症过程优先;并且,生长/重塑平衡向结构组件的进行性退化转移,最终结果是局部薄弱的壁易于快速扩张和破裂。我们将在共聚焦显微镜下使用定制设计的微双轴装置研究应力介导的弱化。先前的研究已经表明,材料特性以及动脉瘤壁中的胶原蛋白含量和方向发生了显著变化。特别是,壁的变形能力似乎与其强度有关,变形的局部增加可能有助于识别破裂风险升高的区域。然而,这样的信息不能用当前的临床成像模式非侵入性地导出。基于我们的初步结果与光流检测壁变形,我们将开发一个软件套件,以获得在体内地图的变形和局部材料性能。一旦估计出局部材料特性,我们将采用多尺度方法来充分表征组织的体内机械状态。这是评估破裂可能性的重要信息。提出的新方法允许估计个性化的患者特定数据(患者间变异性)的指数,同时还考虑到胸段内的众所周知的区域异质性(患者内变异性)。该技术将用于识别基于工程的主动脉瘤加速生长和夹层指数,并提供早期可靠的干预指征。最终结果将是一个工程软件工具,通过体内力学评估提供对应力介导的软组织退化的估计。该技术可应用于其他软组织,包括左心房壁以识别房颤复发,以及软骨和肌腱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DiMartino, Elena其他文献

DiMartino, Elena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DiMartino, Elena', 18)}}的其他基金

Bio-mechanical studies of normal and aging arterial wall
正常和老化动脉壁的生物力学研究
  • 批准号:
    RGPIN-2019-07178
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-mechanical studies of normal and aging arterial wall
正常和老化动脉壁的生物力学研究
  • 批准号:
    RGPIN-2019-07178
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-mechanical studies of normal and aging arterial wall
正常和老化动脉壁的生物力学研究
  • 批准号:
    RGPIN-2019-07178
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-mechanical studies of normal and aging arterial wall
正常和老化动脉壁的生物力学研究
  • 批准号:
    RGPIN-2019-07178
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bioengineering tools for aortic pathologies: the role of in vivo mechanics
主动脉病理的生物工程工具:体内力学的作用
  • 批准号:
    RGPIN-2014-04043
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bioengineering tools for aortic pathologies: the role of in vivo mechanics
主动脉病理的生物工程工具:体内力学的作用
  • 批准号:
    RGPIN-2014-04043
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Biomedical Engineering Industry Partnership Day
生物医学工程产业合作日
  • 批准号:
    503356-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Connect Grants Level 2
Bioengineering tools for aortic pathologies: the role of in vivo mechanics
主动脉病理的生物工程工具:体内力学的作用
  • 批准号:
    RGPIN-2014-04043
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Bioengineering tools for aortic pathologies: the role of in vivo mechanics
主动脉病理的生物工程工具:体内力学的作用
  • 批准号:
    RGPIN-2014-04043
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
4D FLOW AS A DIAGNOSTIC AID FOR AORTIC PATHOLOGIES
4D 血流作为主动脉病变的诊断辅助手段
  • 批准号:
    476341-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program

相似海外基金

Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
  • 批准号:
    10563289
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
  • 批准号:
    10716472
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Extracellular Vesicle Delivery System for Treatment of Abdominal Aortic Aneurysm
细胞外囊泡递送系统治疗腹主动脉瘤
  • 批准号:
    10751123
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
GATA4 as a Modulator of Aortic Root Sensitivity to Mechanochemical Disruptions Caused by an Aneurysm-causing Mutation
GATA4 作为主动脉根部对动脉瘤突变引起的机械化学破坏敏感性的调节剂
  • 批准号:
    10462239
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Mechanism underlying cofactor-dependent proteolysis of von Willebrand Factor
冯维勒布兰德因子辅因子依赖性蛋白水解的机制
  • 批准号:
    10376469
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
A Novel computational approach to optimize Fontan and improve surgical predictability
一种优化 Fontan 并提高手术可预测性的新型计算方法
  • 批准号:
    10557238
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
A Novel computational approach to optimize Fontan and improve surgical predictability
一种优化 Fontan 并提高手术可预测性的新型计算方法
  • 批准号:
    10346020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Discovering the Origin of Vascular Aging Amyloid Protein Medin
发现血管老化淀粉样蛋白的起源
  • 批准号:
    10351895
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Mechanism underlying cofactor-dependent proteolysis of von Willebrand Factor
冯维勒布兰德因子辅因子依赖性蛋白水解的机制
  • 批准号:
    10551879
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
GATA4 as a Modulator of Aortic Root Sensitivity to Mechanochemical Disruptions Caused by an Aneurysm-causing Mutation
GATA4 作为主动脉根部对动脉瘤突变引起的机械化学破坏敏感性的调节剂
  • 批准号:
    10806122
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了