Cellular and molecular mechanisms of skeletal muscle homeostasis during hibernation

冬眠期间骨骼肌稳态的细胞和分子机制

基本信息

  • 批准号:
    RGPIN-2014-04143
  • 负责人:
  • 金额:
    $ 3.86万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Skeletal muscle is the largest organ in the human body, comprising ~50% of body mass. Skeletal muscle is necessary to promote several facets of a healthy life, including locomotion, heat production and glucose homeostasis. Loss of skeletal muscle mass can be the result of a variety of conditions including aging, nutrient deprivation and prolonged immobility. This, in turn, increases the incidence of pathologic fractures, functional deterioration, institutionalization and mortality. Hibernation is an important adaptation strategy among some mammals that allow for survival during prolonged cold temperatures and scarce food supply. Remarkably, although the hibernating animal can be inactive for several months and does not consume food during this time, there is minimal skeletal muscle atrophy. This is in stark contrast to non-hibernating mammals such as mice that can lose almost half of their limb muscle mass after just 12 days of limb immobilization. The primary objective of the current proposal is to employ an entirely novel and innovative approach to elucidate the cellular and molecular mechanisms involved in preservation of critical skeletal muscle mass and function. We will comprehensively characterize these mechanisms in the 13-lined ground squirrel, an obligate hibernator that enters into a torpid, immobilized state during the winter. As a long-standing model for studies of hibernation, the 13-lined ground squirrel presents a powerful comparative model that may yield valuable insights into fundamental processes of muscle homeostasis. In order to address the primary objective of our research program, we will organize our studies into four distinct but complimentary projects. Our first project will aim to identify the critical components of two well-defined exercise-induced signaling pathways during protection against atrophy. It has been demonstrated that both pathways are active in the muscle of hibernating ground squirrels simultaneously, in contrast to non-hibernating mammals. In our second project, we will investigate the dependence of muscle protection during hibernation on NAD (nicotinamide adenine dinucleotide), a vital molecule that is required in several enzymatic reactions throughout the cell. Since muscle atrophy has been associated with mitochondrial dysfunction, and NAD is critical to proper mitochondrial function and energy production, we will test the hypothesis that maintaining adequate NAD levels within the mitochondria during hibernation is critical to preserving muscle mass. Our third project will aim to delineate the role of resident skeletal muscle stem cells, known as satellite cells, in the repair process that is initiated by hibernating muscle following injury. These studies will focus on regeneration capacity and fibrosis, since we have previously observed that injured hibernating squirrel muscle regenerates notably slower and lacks fibrosis when compared with active squirrels. Finally, we will test the hypothesis that circulating factors, extrinsic to skeletal muscle, contribute to the maintenance of muscle mass during hibernation by comparing plasma metabolite profiles between active and hibernating ground squirrels. Together, these projects will provide novel insights and relevant characterization of the mechanisms utilized by hibernating ground squirrels to maintain skeletal muscle mass. They will moreover carry the potential to improve our understanding of the biological mechanisms involved in skeletal muscle preservation and regeneration in non-hibernating mammals.
骨骼肌是人体最大的器官,约占体重的50%。骨骼肌是促进健康生活的几个方面所必需的,包括运动,产热和葡萄糖稳态。骨骼肌质量的损失可能是多种情况的结果,包括衰老,营养剥夺和长期不活动。这反过来又增加了病理性骨折、功能恶化、住院和死亡率的发生率。冬眠是一些哺乳动物在长时间低温和食物供应不足的情况下生存的重要适应策略。值得注意的是,虽然冬眠的动物可以几个月不活动,在这段时间里不吃东西,但骨骼肌萎缩很小。这与非冬眠的哺乳动物形成鲜明对比,比如老鼠,在仅仅12天的肢体固定后,它们的肢体肌肉量就会减少近一半。当前建议的主要目的是采用一种全新的和创新的方法来阐明涉及保存关键骨骼肌质量和功能的细胞和分子机制。我们将全面表征这些机制在13线地松鼠,专性冬眠进入冬眠,在冬季静止状态。作为冬眠研究的长期模型,13纹地鼠提供了一个强大的比较模型,可能对肌肉稳态的基本过程产生有价值的见解。为了解决我们研究计划的主要目标,我们将我们的研究分为四个不同但互补的项目。我们的第一个项目将旨在确定两个明确定义的运动诱导信号通路在防止萎缩过程中的关键组成部分。与不冬眠的哺乳动物相比,冬眠的地松鼠肌肉中的两条通路同时活跃。在我们的第二个项目中,我们将研究冬眠期间肌肉保护对NAD(烟酰胺腺嘌呤二核苷酸)的依赖,NAD是整个细胞中几种酶促反应所必需的重要分子。由于肌肉萎缩与线粒体功能障碍有关,而NAD对线粒体正常功能和能量产生至关重要,因此我们将验证在冬眠期间保持线粒体内足够的NAD水平对保持肌肉质量至关重要的假设。我们的第三个项目将旨在描述驻留骨骼肌干细胞(称为卫星细胞)在损伤后休眠肌肉启动的修复过程中的作用。这些研究将侧重于再生能力和纤维化,因为我们之前观察到,与活动松鼠相比,受伤的冬眠松鼠肌肉再生明显较慢且缺乏纤维化。最后,我们将通过比较活动地松鼠和冬眠地松鼠的血浆代谢物谱来验证循环因子(骨骼肌外部的)有助于冬眠期间肌肉质量维持的假设。总之,这些项目将为冬眠地松鼠维持骨骼肌质量的机制提供新的见解和相关特征。此外,它们将有可能提高我们对非冬眠哺乳动物骨骼肌保存和再生的生物学机制的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cohn, Ronald其他文献

An efficient and cost-effective purification protocol for Staphylococcus aureus Cas9 nuclease.
  • DOI:
    10.1016/j.xpro.2022.101933
  • 发表时间:
    2023-03-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teng, Allen C. T.;Tavassoli, Marjan;Shrestha, Suja;Marks, Ryan M.;Mcfadden, Meghan J.;Evagelou, Sonia L.;Lindsay, Kyle;Vandenbelt, Ava;Li, Wenping;Ivakine, Evgueni;Cohn, Ronald;Santerre, J. Paul;Gramolini, Anthony O.
  • 通讯作者:
    Gramolini, Anthony O.

Cohn, Ronald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cohn, Ronald', 18)}}的其他基金

Cellular and molecular mechanisms of skeletal muscle homeostasis during hibernation
冬眠期间骨骼肌稳态的细胞和分子机制
  • 批准号:
    RGPIN-2014-04143
  • 财政年份:
    2018
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Cellular and molecular mechanisms of skeletal muscle homeostasis during hibernation
冬眠期间骨骼肌稳态的细胞和分子机制
  • 批准号:
    RGPIN-2014-04143
  • 财政年份:
    2017
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Cellular and molecular mechanisms of skeletal muscle homeostasis during hibernation
冬眠期间骨骼肌稳态的细胞和分子机制
  • 批准号:
    RGPIN-2014-04143
  • 财政年份:
    2016
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Cellular and molecular mechanisms of skeletal muscle homeostasis during hibernation
冬眠期间骨骼肌稳态的细胞和分子机制
  • 批准号:
    RGPIN-2014-04143
  • 财政年份:
    2015
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
  • 批准号:
    82304565
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
  • 批准号:
    31900545
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
  • 批准号:
    10648672
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Elucidating mechanisms of cellular communication critical for head and neck cancer progression and metastasis.
阐明对头颈癌进展和转移至关重要的细胞通讯机制。
  • 批准号:
    10752228
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Genetic and biophysical mechanisms that control influenza virus cellular multiplicity of infection
控制流感病毒细胞感染多重性的遗传和生物物理机制
  • 批准号:
    10659426
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Cellular mechanisms of NLRP3 activation by ALCAT1 in diet-induced obesity
饮食诱导肥胖中 ALCAT1 激活 NLRP3 的细胞机制
  • 批准号:
    10658507
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Mechanisms of Cellular Senescence Driving Intervertebral Disc Aging through Local Cell Autonomous and Systemic Non-Cell Autonomous Processes
细胞衰老通过局部细胞自主和全身非细胞自主过程驱动椎间盘老化的机制
  • 批准号:
    10635092
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Molecular, Cellular, and Circuit Mechanisms of Nociception Behavior
伤害感受行为的分子、细胞和回路机制
  • 批准号:
    10552222
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Conference: 2023 Molecular Mechanisms in Evolutions GRC and GRS: Genetic and Phenotypic Evolution at the Organismal, Cellular and Molecular Levels
会议:2023进化中的分子机制GRC和GRS:有机体、细胞和分子水平的遗传和表型进化
  • 批准号:
    2328755
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Standard Grant
Identification of the molecular and cellular mechanisms driving cardiac fibrosis: A novel ex-vivo approach to target identification and validation
驱动心脏纤维化的分子和细胞机制的鉴定:一种新颖的体外靶标鉴定和验证方法
  • 批准号:
    NC/X001733/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Training Grant
Cellular and circuit function of Ndnf-expressing interneurons in a mouse model of a neurodevelopmental disorder
神经发育障碍小鼠模型中表达 Ndnf 的中间神经元的细胞和回路功能
  • 批准号:
    10678812
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
  • 批准号:
    10814079
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了