Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
基本信息
- 批准号:RGPIN-2014-04540
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The act of searching is an important part of many humanitarian operations, such as search and rescue, demining, and of many surveillance operations for the purpose of protecting individuals, resources or infrastructures. Teams of searchers (humans and dogs) or autonomous unmanned vehicles (robots) may search for survivors, land or underwater mines, or illicit activities and abnormal behaviors. But, how and where to search? The answer lies in good and efficient search planning that ensures the best use of scarce and constrained search resources, while minimizing the risks to the search teams. Search agents must therefore define search areas and plan search paths in order to maximize the chances of their operations success, often in degraded and rapidly changing conditions. This is a particularly important phase, especially in the presence of uncertainty on the whereabouts, the detectability, and the conditions of the survivors, the threats, or the search objects. In this research program, we are interested in path planning under uncertainty in the presence of multiple and conflicting objectives. We strive to provide the planners (decision makers) with rigorous and efficient methods to help them address the challenges they face in uncertain and unfriendly environments. In order to do so, we intend to develop decision support tools based on rigorous mathematical models representative of the real-life problems encountered. This is needed in order to assist decision makers (search planners) in defining adequate and realistic search plans that take into account the multiple dimensions of search operations such as terrain constraints, physical constraints, visibility constraints, threat exposure, time constraints, detection capabilities, type of resources available, environmental conditions, etc. Research projects addressing path planning under uncertainty in the presence of multiple conflicting objectives are scarce. Most of the published results apply to situations where the goal is to get from a given point to a known destination, and are often based on a single objective optimization. Therefore, there is a need to advance research and ample opportunity for innovation in tackling this difficult problem. Our goal is to develop approaches integrating multiobjective optimization techniques that provide efficient solutions, with multicriteria decision analysis techniques that explicitly take into account the preferences and values of the decision maker in the loop. In addition, it is very important that decision makers understand how and why the proposed search plans were produced; these should not be perceived as the outcomes of a black box. For this reason, there is a great added benefit in providing the decision makers with explanation modules that present the rationale behind the proposed search plans. In this proposal, we will design, develop, validate and evaluate algorithms for path planning of multi-agents such as autonomous vehicles in the context of multiple objectives, with uncertainty on the whereabouts of the search objects, and on the detection capabilities. Subsequently, we will develop models and methods, based on discrete multicriteria decision analysis, that guide a decision maker’s choice of a path plan, that explicitly integrate his/her preferences and values, and that allow him/her to explore the various alternatives and visualize them with a geographic information system. Finally, we will explore how computational argumentation can be applied to provide explanations and argue for the proposed solutions. In addition to it being valuable for the decision maker, the introduction of computational argumentation in the multicriteria decision making framework would be leading edge research.
搜索行动是许多人道主义行动的重要组成部分,例如搜救、排雷和许多旨在保护个人、资源或基础设施的监视行动。搜索队(人类和狗)或自动无人驾驶车辆(机器人)可以搜索幸存者、陆地或水下地雷、或非法活动和异常行为。但是,如何以及在哪里进行搜索呢?答案在于良好和有效的搜索规划,确保最大限度地利用稀缺和有限的搜索资源,同时将搜索团队面临的风险降至最低。因此,搜索代理必须定义搜索区域并规划搜索路径,以便最大限度地提高其行动成功的机会,这通常是在退化和快速变化的条件下进行的。这是一个特别重要的阶段,特别是在幸存者、威胁或搜索对象的下落、可探测性和条件存在不确定性的情况下。在这个研究项目中,我们感兴趣的是存在多个相互冲突的目标的不确定情况下的路径规划。我们努力为规划者(决策者)提供严格有效的方法,帮助他们应对在不确定和不友好的环境中面临的挑战。为了做到这一点,我们打算开发基于代表现实生活中遇到的问题的严格数学模型的决策支持工具。这是必要的,以协助决策者(搜索规划者)制定充分和现实的搜索计划,考虑到搜索行动的多个维度,例如地形限制、物理限制、能见度限制、威胁暴露、时间限制、检测能力、可用资源的类型、环境条件等。大多数已发表的结果适用于目标是从给定点到达已知目的地的情况,并且通常基于单一目标优化。因此,在解决这一难题时,需要推进研究并提供充足的创新机会。我们的目标是开发出将多目标优化技术与多准则决策分析技术相结合的方法,这些技术提供有效的解决方案,并明确考虑循环中决策者的偏好和价值。此外,非常重要的是,决策者必须了解拟议的搜索计划是如何以及为什么产生的;这些计划不应被视为黑箱作业的结果。因此,向决策者提供解释模块,说明拟议的搜索计划背后的理由,还有很大的额外好处。在该方案中,我们将设计、开发、验证和评估多智能体(如自动驾驶车辆)在多目标、搜索对象的位置和检测能力不确定的情况下的路径规划算法。随后,我们将开发基于离散多准则决策分析的模型和方法,指导决策者选择路径计划,明确将他/她的偏好和价值观结合起来,使他/她能够探索各种替代方案,并用地理信息系统将其可视化。最后,我们将探讨如何应用计算论证来提供解释,并为提出的解决方案进行辩论。除了对决策者有价值外,在多准则决策框架中引入计算论证将是前沿研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AbiZeid, Irène其他文献
AbiZeid, Irène的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AbiZeid, Irène', 18)}}的其他基金
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
- 批准号:
RGPIN-2020-05642 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
- 批准号:
RGPIN-2020-05642 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
- 批准号:
RGPIN-2020-05642 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Le développement d'outils d'aide multicritère à la décision dans le contexte de priorisation de projets municipaux
多目标开发和市政项目优先级背景决策
- 批准号:
543541-2019 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Rétro-ingénierie de la décision optimale de gestion dans un réseau d'assainissement
在研究行动中进行最佳管理决策的审查
- 批准号:
486443-2015 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria search with multiple searchers in uncertain environments
不确定环境下多个搜索者的多标准搜索
- 批准号:
300890-2009 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Interactive decision making for multilevel multiobjective simple recourse programming problems and its applications
多层次多目标简单资源规划问题的交互式决策及其应用
- 批准号:
17K01264 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Interactive fuzzy multiobjective decision making through global particle swarm optimization under fuzzy stochastic enverionment and its applications
模糊随机环境下全局粒子群优化交互式模糊多目标决策及其应用
- 批准号:
26750115 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Young Scientists (B)