Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
基本信息
- 批准号:RGPIN-2014-04540
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The act of searching is an important part of many humanitarian operations, such as search and rescue, demining, and of many surveillance operations for the purpose of protecting individuals, resources or infrastructures. Teams of searchers (humans and dogs) or autonomous unmanned vehicles (robots) may search for survivors, land or underwater mines, or illicit activities and abnormal behaviors. But, how and where to search? The answer lies in good and efficient search planning that ensures the best use of scarce and constrained search resources, while minimizing the risks to the search teams. Search agents must therefore define search areas and plan search paths in order to maximize the chances of their operations success, often in degraded and rapidly changing conditions. This is a particularly important phase, especially in the presence of uncertainty on the whereabouts, the detectability, and the conditions of the survivors, the threats, or the search objects. In this research program, we are interested in path planning under uncertainty in the presence of multiple and conflicting objectives. We strive to provide the planners (decision makers) with rigorous and efficient methods to help them address the challenges they face in uncertain and unfriendly environments. In order to do so, we intend to develop decision support tools based on rigorous mathematical models representative of the real-life problems encountered. This is needed in order to assist decision makers (search planners) in defining adequate and realistic search plans that take into account the multiple dimensions of search operations such as terrain constraints, physical constraints, visibility constraints, threat exposure, time constraints, detection capabilities, type of resources available, environmental conditions, etc.Research projects addressing path planning under uncertainty in the presence of multiple conflicting objectives are scarce. Most of the published results apply to situations where the goal is to get from a given point to a known destination, and are often based on a single objective optimization. Therefore, there is a need to advance research and ample opportunity for innovation in tackling this difficult problem. Our goal is to develop approaches integrating multiobjective optimization techniques that provide efficient solutions, with multicriteria decision analysis techniques that explicitly take into account the preferences and values of the decision maker in the loop. In addition, it is very important that decision makers understand how and why the proposed search plans were produced; these should not be perceived as the outcomes of a black box. For this reason, there is a great added benefit in providing the decision makers with explanation modules that present the rationale behind the proposed search plans. In this proposal, we will design, develop, validate and evaluate algorithms for path planning of multi-agents such as autonomous vehicles in the context of multiple objectives, with uncertainty on the whereabouts of the search objects, and on the detection capabilities. Subsequently, we will develop models and methods, based on discrete multicriteria decision analysis, that guide a decision maker’s choice of a path plan, that explicitly integrate his/her preferences and values, and that allow him/her to explore the various alternatives and visualize them with a geographic information system. Finally, we will explore how computational argumentation can be applied to provide explanations and argue for the proposed solutions. In addition to it being valuable for the decision maker, the introduction of computational argumentation in the multicriteria decision making framework would be leading edge research.
搜索行为是许多人道主义行动的重要组成部分,例如搜救、排雷以及许多旨在保护个人、资源或基础设施的监视行动。搜索者团队(人和狗)或自主无人车辆(机器人)可能会搜索幸存者、陆地或水下地雷、非法活动和异常行为。但是,如何以及在哪里进行搜索?答案在于良好、高效的搜索规划,确保充分利用稀缺且有限的搜索资源,同时最大限度地降低搜索团队的风险。因此,搜索代理必须定义搜索区域并规划搜索路径,以便最大限度地提高其行动成功的机会,通常是在退化和快速变化的条件下。这是一个特别重要的阶段,特别是在幸存者、威胁或搜索对象的行踪、可探测性和状况存在不确定性的情况下。在这个研究项目中,我们对存在多个且相互冲突的目标的不确定性下的路径规划感兴趣。我们努力为规划者(决策者)提供严谨、高效的方法,帮助他们应对在不确定和不友好的环境中面临的挑战。为此,我们打算开发基于代表现实生活中遇到的问题的严格数学模型的决策支持工具。这是为了帮助决策者(搜索规划者)制定充分且现实的搜索计划,该计划考虑到搜索行动的多个维度,例如地形限制、物理限制、能见度限制、威胁暴露、时间限制、检测能力、可用资源类型、环境条件等。在存在多个相互冲突的目标的情况下解决不确定性下的路径规划的研究项目很少。大多数已发布的结果适用于目标是从给定点到达已知目的地的情况,并且通常基于单一目标优化。因此,解决这一难题需要推进研究和充足的创新机会。我们的目标是开发将提供有效解决方案的多目标优化技术与明确考虑循环中决策者的偏好和价值观的多标准决策分析技术相结合的方法。此外,决策者了解拟议搜索计划的制定方式和原因也非常重要;这些不应被视为黑匣子的结果。因此,为决策者提供解释模块来展示拟议搜索计划背后的基本原理有很大的额外好处。在本提案中,我们将设计、开发、验证和评估多智能体(例如自动驾驶汽车)在多目标背景下的路径规划算法,搜索对象的行踪和检测能力具有不确定性。随后,我们将开发基于离散多标准决策分析的模型和方法,指导决策者选择路径计划,明确整合他/她的偏好和价值观,并允许他/她探索各种替代方案并通过地理信息系统将它们可视化。最后,我们将探讨如何应用计算论证来提供解释并论证所提出的解决方案。除了对决策者有价值之外,在多标准决策框架中引入计算论证将是前沿研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AbiZeid, Irène其他文献
AbiZeid, Irène的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AbiZeid, Irène', 18)}}的其他基金
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
- 批准号:
RGPIN-2020-05642 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
- 批准号:
RGPIN-2020-05642 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence meets Multi-Criteria Decision Aiding in smart sustainble cities
人工智能在可持续智慧城市中满足多标准决策辅助
- 批准号:
RGPIN-2020-05642 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Le développement d'outils d'aide multicritère à la décision dans le contexte de priorisation de projets municipaux
多目标开发和市政项目优先级背景决策
- 批准号:
543541-2019 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Rétro-ingénierie de la décision optimale de gestion dans un réseau d'assainissement
在研究行动中进行最佳管理决策的审查
- 批准号:
486443-2015 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria search with multiple searchers in uncertain environments
不确定环境下多个搜索者的多标准搜索
- 批准号:
300890-2009 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Interactive decision making for multilevel multiobjective simple recourse programming problems and its applications
多层次多目标简单资源规划问题的交互式决策及其应用
- 批准号:
17K01264 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based decision support systems for multiobjective decision making
基于优化的多目标决策支持系统
- 批准号:
251141-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Interactive fuzzy multiobjective decision making through global particle swarm optimization under fuzzy stochastic enverionment and its applications
模糊随机环境下全局粒子群优化交互式模糊多目标决策及其应用
- 批准号:
26750115 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual