Personalized Decision Support Driven by Similarity Metrics

由相似性指标驱动的个性化决策支持

基本信息

  • 批准号:
    RGPIN-2014-04743
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Decision making is an important aspect of various fields including medicine, public health, politics, economics, business, retail, and sports. Although optimal decisions rooted in quantitative evidence are desired, challenges arise in the absence of established decision making guidelines supported by scientific research. When there is no clear guideline, decision makers resort to previous training, local culture, and anecdotal experiences, which frequently lead to biased reasoning. Today’s massive production and storage of electronic data thanks to advances in information technology open doors to an attractive alternative, namely data-driven decision making, which extracts relevant knowledge from valuable electronic data and instantaneously delivers it to decision makers. One promising avenue in data-driven decision making that I propose to investigate is personalized decision support based on analysis of similar cases in electronic data. The envisioned core technology is computation of similarity metrics (SMs) that objectively quantify the extent to which two cases are similar to each other. Depending on the application, a ‘case’ can be a patient, organization, consumer, or community. Based on an SM, the personalized decision support paradigm first identifies past cases that are just like a current case under investigation. By analyzing what happened to those similar cases after their equivalent point in time, it is feasible to inform personalized decision making. Specifically, SMs can help forecast the future of the present case or facilitate decision analysis via investigating the effects of past decisions. This proposed research hypothesizes that longitudinal patterns (i.e., data as a function of time), in addition to just static information, play a crucial role in SMs since they capture dynamic characteristics. Now that we have powerful computers, inexpensive data storage, and novel data sources thanks to the Internet and ubiquitous mobile devices, the concept of similarity can be tightened to move away from traditional one-size-fits-all decisions to tailor-made real-time decisions. After all, every case is unique at some level of detail. The primary outcome of this proposed research will be a complete decision support infrastructure encompassing SMs, data warehouses, computational nodes, and software decision support tools with effective user interfaces and data visualization. Public databases will be utilized in order to bypass time-consuming data collection. Mathematical and statistical modeling as well as artificial intelligence will be leveraged to develop both generic and problem-specific SMs, while high-performance computing will be the backbone of the decision support tools. The seamless integration of SMs with personalized decision support and real-time cultivation of knowledge relevant to decision making are completely novel and will push the envelope of the current state-of-the-art decision support processes. This proposed research program is at the core of data science, which is expected to be a significant job creator in the foreseeable future in both academia and industry. However, most universities currently do not operate degree programs in data science because it is a relatively new field in the intersection of several distinct fields including computer science, statistics, and mathematics. By having undergraduate and graduate students lead all aspects of the research, a top priority in the proposed research is to train highly qualified personnel as proficient data scientists equipped with both hands-on computing skills and theoretical foundations.
决策是医学、公共卫生、政治、经济、商业、零售、体育等各个领域的一个重要方面。尽管需要建立在定量证据基础上的最佳决策,但在缺乏由科学研究支持的既定决策指南的情况下,会出现挑战。当没有明确的指导方针时,决策者会求助于以前的培训、当地文化和轶事经验,这往往会导致偏颇的推理。今天,由于信息技术的进步,电子数据的大量生产和存储为一种有吸引力的替代方案打开了大门,即数据驱动的决策,它从有价值的电子数据中提取相关知识,并立即将其提供给决策者。在数据驱动决策方面,我建议研究的一个有前途的方法是基于对电子数据中类似案例的分析而提供的个性化决策支持。设想的核心技术是相似性度量计算(SMS),它客观地量化两个案例彼此相似的程度。根据应用程序的不同,“案例”可以是患者、组织、消费者或社区。基于SM,个性化决策支持范式首先识别过去的案例,就像正在调查的当前案例一样。通过分析相似案例在等价时间点后的情况,为个性化决策提供信息是可行的。具体地说,短信可以帮助预测当前案件的未来,或通过调查过去判决的影响来促进决策分析。这项研究假设,除了静态信息外,纵向模式(即数据作为时间的函数)在短信中扮演着至关重要的角色,因为它们捕捉到了动态特征。现在,由于互联网和无处不在的移动设备,我们拥有了强大的计算机、廉价的数据存储和新颖的数据源,相似性的概念可以得到加强,从传统的一刀切的决策转变为量身定做的实时决策。毕竟,每个案例在某种程度上都是独一无二的。这项拟议研究的主要成果将是一个完整的决策支持基础设施,包括短信、数据仓库、计算节点和具有有效用户界面和数据可视化的软件决策支持工具。将利用公共数据库,以绕过耗时的数据收集。将利用数学和统计建模以及人工智能来开发通用和针对具体问题的管理信息系统,而高性能计算将是决策支持工具的支柱。短信与个性化决策支持的无缝集成以及与决策相关的知识的实时培养是完全新颖的,将推动当前最先进的决策支持过程的极限。这项拟议的研究计划是数据科学的核心,预计在可预见的未来,这将在学术界和工业界创造重要的就业机会。然而,大多数大学目前没有开设数据科学学位课程,因为它是一个相对较新的领域,涉及几个不同的领域,包括计算机科学、统计学和数学。通过让本科生和研究生领导这项研究的各个方面,拟议中的研究的首要任务是培养高素质的人才,成为熟练的数据科学家,同时具备实际操作的计算技能和理论基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lee, Joon其他文献

Signal Quality Estimation With Multichannel Adaptive Filtering in Intensive Care Settings
Impact of an Automated Best Practice Alert on Sex and Race Disparities in Implantable Cardioverter-Defibrillator Therapy.
  • DOI:
    10.1161/jaha.121.023669
  • 发表时间:
    2022-04-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Thalappillil, Alvin;Johnson, Amber;Althouse, Andrew;Thoma, Floyd;Lee, Jae;Estes, N. A. Mark, III;Jain, Sandeep;Lee, Joon;Saba, Samir
  • 通讯作者:
    Saba, Samir
Severity of Acute Kidney Injury and Two-Year Outcomes in Critically Ill Patients
  • DOI:
    10.1378/chest.12-2967
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Fuchs, Lior;Lee, Joon;Talmor, Daniel
  • 通讯作者:
    Talmor, Daniel
The Rad9-Hus1-Rad1 checkpoint interaction of TopBP1 with ATR
  • DOI:
    10.1074/jbc.m704635200
  • 发表时间:
    2007-09-21
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Lee, Joon;Kumagai, Akiko;Dunphy, William G.
  • 通讯作者:
    Dunphy, William G.
User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study
  • DOI:
    10.2196/mhealth.8211
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Puri, Arjun;Kim, Ben;Lee, Joon
  • 通讯作者:
    Lee, Joon

Lee, Joon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lee, Joon', 18)}}的其他基金

Using case difficulty to improve predictive performance evaluation
利用案例难度来改进预测绩效评估
  • 批准号:
    RGPIN-2021-02588
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Using case difficulty to improve predictive performance evaluation
利用案例难度来改进预测绩效评估
  • 批准号:
    RGPIN-2021-02588
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
  • 批准号:
    2339992
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
The AMPREDICT PROsthetics Decision Support Tool: using evidence to guide personalized prosthetic prescription and rehabilitation planning
AMPREDICT 假肢决策支持工具:利用证据指导个性化假肢处方和康复规划
  • 批准号:
    10750706
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Matching genotypes with personalized therapies: Development of a decision support infrastructure to augment the value of precision medicine
将基因型与个性化治疗相匹配:开发决策支持基础设施以增强精准医疗的价值
  • 批准号:
    10645785
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
COMputerized PAtient-centered Collaborative Technology (COMPACT) to Support Personalized Decision Making in Breast Cancer
以患者为中心的计算机化协作技术 (COMPACT) 支持乳腺癌的个性化决策
  • 批准号:
    10507348
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Supporting long term care residents through transitions to acute care hospital and end-of-life care with personalized prognoses and electronic decision support tools
通过个性化预后和电子决策支持工具,支持长期护理居民过渡到急症护理医院和临终关怀
  • 批准号:
    465985
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Operating Grants
COMputerized PAtient-centered Collaborative Technology (COMPACT) to Support Personalized Decision Making in Breast Cancer
以患者为中心的计算机化协作技术 (COMPACT) 支持乳腺癌的个性化决策
  • 批准号:
    10704122
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Personalized Clinical Decision Support to Improve Participation in Hospital at Home
个性化临床决策支持,提高在家就医的参与度
  • 批准号:
    10428461
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Harnessing predictive analytics for personalized high-value health: nesting clinical decision support for cardiovascular disease and chronic obstructive pulmonary disease in a provincial lung cancer screening program
利用预测分析实现个性化高价值健康:将心血管疾病和慢性阻塞性肺疾病的临床决策支持纳入省级肺癌筛查计划
  • 批准号:
    444785
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Operating Grants
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Decision Support Driven by Similarity Metrics
由相似性指标驱动的个性化决策支持
  • 批准号:
    RGPIN-2014-04743
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了