Personalized Clinical Decision Support to Improve Participation in Hospital at Home
个性化临床决策支持,提高在家就医的参与度
基本信息
- 批准号:10428461
- 负责人:
- 金额:$ 10.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Inpatient hospitalization is costly – accounting for $1.1 trillion in health care spending annually in the United
States – and is associated with high morbidity and mortality risks. Hospital at Home (HaH) is an alternative
care model where care teams provide acute hospital-level care in a patient’s home. Despite decades of data
that support HaH efficacy relevant to key patient-centered outcomes, barriers to HaH participation limit its
widespread adoption and population health impact. Our central hypothesis is that providers and patients
require Clinical Decision Support (CDS) integrating data from disparate sources and a Shared Decision Making
(SDM) framework to help inform point-of-care decisions regarding HaH and surmount low participation rates.
The overarching goal of our work is to improve value-driven care by helping patients engage in the decision of
which acute-level care option best meets their needs. The objective of this study is to evaluate whether a
Health Information Technology (IT)-enabled SDM solution incorporating expected patient outcomes and
preferences and deployed at the point-of-care improves patient and provider participation in HaH as a care
model. To achieve this objective, we will: 1) characterize patient, caregiver, and provider perceptions of the risk
tradeoffs, needs, and care preferences for HaH; 2) partner with patients, caregivers, and providers to iteratively
design Hospital-level Outpatient Management Evaluation and Decision Support (HOME-DS), a Health IT-
enabled SDM solution that incorporates risk-model probabilities and patient and caregiver preferences; and 3)
evaluate the feasibility of implementing HOME-DS in acute care and establish the acceptance rate of HaH. We
will focus HOME-DS on adults aged 18 and older hospitalized with suspected pneumonia, a prevelant
condition that has been commonly included in HaH models. We will apply the previously validated and broadly
accepted Pneumonia Severity Index (PSI) as the quantitative risk score input for HOME-DS. User personas
and needs for the initial HOME-DS prototype will be defined through key informant interviews with patients
hospitalized with pneumonia, their caregivers, and providers (Aim1); user-centric design principles will further
guide iterative development of the HOME-DS prototype (Aim 2); and we will test the feasibility of implementing
HOME-DS in acute care to guide patient and caregiver decision making in selecting hospital level care in the
home or traditional hospital (Aim 3). We hypothesize HOME-DS is feasible to implement within the provider
workflow for hospital admission and can yield participation rates in HaH of 50%. The proposed project will
engage a heterogeneous population with pneumonia, as this is a population with substantial acute care
utilization costs and a large gap in understanding implementation challenges to explain why alternatives to
traditional hospitalization are not used more widely. Results will demonstrate the value of Health IT that
integrates clinical data with patient preferences to promote effective SDM enhancing patient-centered acute
care options.
项目摘要
住院治疗是昂贵的-占1.1万亿美元的医疗保健支出每年在美国
国家-并与高发病率和死亡率的风险。家庭医院(HaH)是一种替代方案
护理模式,其中护理团队在患者家中提供急性医院级护理。尽管有几十年的数据
支持与以患者为中心的关键结局相关的HaH疗效,HaH参与的障碍限制了其
广泛采用和人口健康影响。我们的中心假设是,
需要临床决策支持(CDS)集成来自不同来源的数据和共享决策
(SDM)框架,以帮助告知有关HaH的护理点决策,并克服低参与率。
我们工作的首要目标是通过帮助患者参与决策来改善价值驱动的护理
哪种急性护理方案最能满足他们的需求。本研究的目的是评估是否
健康信息技术(IT)支持的SDM解决方案,包含预期的患者结果和
偏好并部署在护理点,提高了患者和提供者对HaH作为护理的参与度
模型为了实现这一目标,我们将:1)描述患者,护理人员和提供者对风险的感知
HaH的权衡、需求和护理偏好; 2)与患者、护理人员和提供者合作,
设计医院级门诊管理评估和决策支持(HOME-DS),一个健康IT-
整合风险模型概率以及患者和护理人员偏好的启用的SDM解决方案;以及3)
评估在急性护理中实施HOME-DS的可行性,并确定HaH的接受率。我们
将把HOME-DS的重点放在18岁及以上因疑似肺炎住院的成年人身上,
这是HaH模型中通常包含的条件。我们将应用先前验证的和广泛的
接受肺炎严重程度指数(PSI)作为HOME-DS的定量风险评分输入。用户角色
最初的HOME-DS原型的需求将通过与患者的关键线人访谈来确定
肺炎住院患者,他们的护理人员和提供者(目标1);以用户为中心的设计原则将进一步
指导HOME-DS原型(目标2)的迭代开发;我们将测试实施的可行性
HOME-DS在急性护理中指导患者和护理人员在选择医院级护理时做出决策,
家庭或传统医院(目标3)。我们假设HOME-DS在供应商内部实现是可行的
住院流程,并可以产生50%的参与率在医院。拟议项目将
接触患有肺炎的异质性人群,因为这是一个需要大量急性护理的人群
使用成本,以及在理解执行挑战方面存在巨大差距,无法解释为什么
传统的住院治疗没有得到更广泛的应用。结果将证明健康IT的价值,
将临床数据与患者偏好相结合,以促进有效的SDM,
护理选项。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Kowalkowski其他文献
Marc Kowalkowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Kowalkowski', 18)}}的其他基金
COVID-19 Healthcare Access and Sequelae Evaluation
COVID-19 医疗保健获取和后遗症评估
- 批准号:
10320654 - 财政年份:2019
- 资助金额:
$ 10.18万 - 项目类别:
A Sepsis Transition Program to Reduce Morbidity and Mortality in High Risk Individuals
败血症过渡计划可降低高危人群的发病率和死亡率
- 批准号:
9982449 - 财政年份:2019
- 资助金额:
$ 10.18万 - 项目类别:
A Sepsis Transition Program to Reduce Morbidity and Mortality in High Risk Individuals
败血症过渡计划可降低高危人群的发病率和死亡率
- 批准号:
10835864 - 财政年份:2019
- 资助金额:
$ 10.18万 - 项目类别:
COVID-19 Healthcare Access and Sequelae Evaluation
COVID-19 医疗保健获取和后遗症评估
- 批准号:
10621400 - 财政年份:2019
- 资助金额:
$ 10.18万 - 项目类别:
A Sepsis Transition Program to Reduce Morbidity and Mortality in High Risk Individuals
败血症过渡计划可降低高危人群的发病率和死亡率
- 批准号:
10397042 - 财政年份:2019
- 资助金额:
$ 10.18万 - 项目类别:
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
- 批准号:
MR/Y007816/1 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Research Grant
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Clinical Decision Support Software for diagnosing and managing eye conditions (Glaucoma) from routine Retinal Fundus Images
用于通过常规视网膜眼底图像诊断和管理眼部疾病(青光眼)的临床决策支持软件
- 批准号:
10055213 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Collaborative R&D
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Development of a Novel Venous Thromboembolism Risk Assessment Model for Perioperative Clinical Decision Support
开发用于围手术期临床决策支持的新型静脉血栓栓塞风险评估模型
- 批准号:
10748559 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
- 批准号:
10699074 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
- 批准号:
10699457 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
I-Corps: A Clinical Decision Support Tool to Manage Abdominal Aortic Aneurysm Patients
I-Corps:管理腹主动脉瘤患者的临床决策支持工具
- 批准号:
2318665 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Utilization of Co-occurrence Analysis of Nursing Observation Data for Clinical Decision Making
利用护理观察数据的共现分析进行临床决策
- 批准号:
23K09844 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)