Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State

深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用

基本信息

  • 批准号:
    RGPIN-2014-04806
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Radioactivity is easy to detect since the nuclear decay emits high energy particles. In fact, it was first discovered by the accidental exposure of photographic film by such particles. Modern electronic detectors are extremely sensitive and can detect radioactivity from even a few radioactive atoms, enabling *radiotracer* techniques, where a chemical species, tagged with a radioactive atom, is followed through chemical, physical and biological processes. This is the basis for medical imaging techniques, such as Positron Emission Tomography (PET). Here, radioactive decay merely reports the location of the radiolabelled species. Certain kinds of radioactivity, however, can give a much more detailed picture of the local environment of the radioactive probe atom, a property that is the basis of beta-detected nuclear magnetic resonance (ß-NMR), the technique on which this proposal is based. Detection by radioactive beta decay makes ß-NMR an exceptionally sensitive means to study the local atomic properties of materials. However, it is complicated to carry out such measurements. The radioactive ions used necessarily have very short halflives on the order of seconds or less, so they must be made immediately before being used. The ISAC facility at TRIUMF, Canada's national lab for nuclear and particle physics, located at UBC in Vancouver, provides beams of such short-lived radioactive ions. Our main probe is a heavy isotope of Li, 8Li (halflife 848 milliseconds). Only a few other labs in the world can make such beams but more are being constructed. Our efforts at TRIUMF lead the world in the development of ß-NMR, and based on our success, other labs are now looking to follow. The difficulty and complexity of such measurements means that we restrict the use of ß-NMR to problems that it is uniquely capable of addressing. A key capability of ß-NMR is the ability to implant the radioactive probe at different depths in a material. While there are many powerful probes of the *surface*, the top atomic layer, of a material, there are very few that can study materials as a function of depth below a surface. Our main motivation then is to use ß-NMR to study surface and interface effects that give rise to poorly understood depth-dependent phenomena in solids on depth scales of a few nanometers (1 billionth of a meter) to a few hundred nm, an important range for modern electronic technology. Interfaces between dissimilar materials like metal/semiconductor, metal/polymer or electrode/electrolyte are crucial to all sorts of devices. As devices are further miniaturized towards the limit of *nanotechnology*, every atom in the device is near an interface. However, interface effects are not well understood. This proposal aims to study interface problems using the depth-resolved power of ß-NMR. Specifically, we will study new materials that may be the basis for next generation technologies, e.g. topological insulators and correlated electronic conductors that have unique electromagnetic properties for new types of devices that may sidestep fundamental limitations of conventional semiconductor devices. We will study nanostructured catalytic metals and interface effects in Li ion conductors, with the aim of a better fundamental understanding and enable new generations of battery technology, crucial for the increasing energy demands of portable devices. We will also explore new applications of ß-NMR to polymers and certain problems in biochemistry that cannot be addressed in other ways. Canada will benefit by leading the world in advanced materials research with outcomes that lead to a better fundamental understanding that will afford optimization of current technologies as well as development of radically new ones.
由于核衰变释放出高能粒子,放射性很容易被探测到。事实上,它最初是由这种粒子意外曝光照相胶片而发现的。现代电子探测器非常灵敏,甚至可以从几个放射性原子中检测到放射性,从而实现了“放射性示踪剂”技术,即通过化学、物理和生物过程跟踪标记有放射性原子的化学物种。这是正电子发射断层扫描(PET)等医学成像技术的基础。在这里,放射性衰变只报告了放射性标记物种的位置。然而,某些种类的放射性可以给出放射性探针原子局部环境的更详细的图景,这一特性是贝塔检测核磁共振(?)的基础,也是这一提议所基于的技术。通过放射性贝塔衰变进行检测,使之成为研究材料局部原子性质的一种特别灵敏的手段。然而,进行这样的测量是复杂的。所使用的放射性离子必须有非常短的半衰期,大约在几秒钟或更短的数量级,因此它们必须在使用前立即制成。位于温哥华UBC的加拿大国家核物理和粒子物理实验室TRIUMF的ISAC设施提供这种短寿命的放射性离子束。我们的主要探测器是重同位素锂,8Li(半衰期848毫秒)。世界上只有几个其他实验室可以制造这样的光束,但更多的正在建造中。我们在TRIUMF所做的努力在开发ü-核磁共振方面处于世界领先地位,在我们成功的基础上,其他实验室现在也在寻求效仿。这类测量的难度和复杂性意味着我们仅限于它唯一能够解决的问题。ç-核磁共振的一项关键能力是能够在材料的不同深度植入放射性探测器。虽然有许多强大的探测器来探测材料的表面,也就是最上面的原子层,但很少有人能够研究材料作为表面下深度的函数。因此,我们的主要动机是使用ü-核磁共振来研究表面和界面效应,这些效应在几纳米(十亿分之一米)到几百纳米(现代电子技术的重要范围)的深度尺度上引起对固体中与深度相关的鲜为人知的现象。金属/半导体、金属/聚合物或电极/电解液等不同材料之间的界面对各种器件都是至关重要的。随着设备进一步小型化,接近纳米技术的极限,设备中的每个原子都在界面附近。然而,界面效应还没有被很好地理解。这项提议旨在利用?核磁共振的深度分辨能力来研究界面问题。具体地说,我们将研究可能成为下一代技术基础的新材料,例如具有独特电磁性能的拓扑绝缘体和相关电子导体,用于可能绕过传统半导体器件的基本限制的新型器件。我们将研究纳米结构的催化金属和锂离子导体中的界面效应,目的是更好地从根本上了解并支持新一代电池技术,这对便携式设备日益增长的能源需求至关重要。我们还将探索在聚合物和生物化学中无法用其他方法解决的某些问题上的新应用。加拿大将受益于在先进材料研究方面处于世界领先地位,其成果将导致更好的基础性理解,从而能够优化现有技术以及开发全新的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MacFarlane, William其他文献

MacFarlane, William的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MacFarlane, William', 18)}}的其他基金

Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
  • 批准号:
    RGPIN-2019-04257
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
  • 批准号:
    RGPIN-2019-04257
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
  • 批准号:
    RGPIN-2019-04257
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
  • 批准号:
    RGPIN-2020-06695
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
  • 批准号:
    RGPIN-2020-06695
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
  • 批准号:
    DGECR-2020-00451
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Launch Supplement
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
  • 批准号:
    RGPIN-2020-06695
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development of film-type depth-dose measurement system for carbon-ion beams and its application to multi-institutional clinical dose intercomparison
碳离子束薄膜式深度剂量测量系统研制及其在多机构临床剂量比对中的应用
  • 批准号:
    20K08013
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Scene flow estimation for 3D video coding and its application to motion and depth compensation
3D 视频编码的场景流估计及其在运动和深度补偿中的应用
  • 批准号:
    17K12717
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了